
Multigrid Methods on ParaHel Computers 
- a Survey on Recent Developments 

Oliver A. McBryan 
Paul 0 .. Frederickson 

Johannes Linden 
Anton Schuller 

Karl Solchenbach 
Klaus Stuben 

Clemens-August 
Ulrich Trottenberg 

ClJ-CS-504-90 

DEPARTMENT SCIENCE 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
DEC 1990 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1990 to 00-00-1990  

4. TITLE AND SUBTITLE 
Multigrid Methods on Parallel Computers - a Survey on Recent 
Developments 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Colorado,Department of Computer 
Science,Boulder,CO,80309 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
M ultigrid methods have been established as being among the most efficient techniques for solving complex
elliptic equations. We sketch the multigrid idea emphasizing that multigrid solution is generally obtainable
in time directly proportional to the number of unknown variables on serial computers. Despite this, even
the most powerful serial computers are not adequate for solving the very large systems generated, for
instance by discretization of fluid flow in three dimensions. A breakthrough can be achieved here only by
highly parallel supercomputers. On the other hand, parallel computers are having a profound impact on
computational science. Recently, highly parallel machines have taken the lead as the fastest
supercomputers a trend that is likely to accelerate in the future. We describe some of these new computers,
and issues involved in using them. We describe standard parallel multigrid algorithms and discuss the
question of how to implement them efficiently on parallel machines. The natural approach is to use grid
partitioning. One intrinsic feature of a parallel machine is the need to perform interprocessor
communication. It is important to ensure that time spent on such communication is maintained at a small
fraction of computation time. We analyze standard parallel multigrid algorithms in two and three
dimensions from this point of view, indicating that high performance efficiencies are attainable under
suitable conditions on moderately parallel machines. We also dernonstrate that such performance is not
attainable for multigrid on massively parallel computers, as indicated by an example of poor efficiency on
65,536 processors. The fundamental difficulty is the inability to keep 65,536 processors busy when
operating on very coarse grids. This example indicates that the straightforward parallelization of multigrid
(and other) algorithms may not always be optimal. However, parallel machines open the possibility of
finding really new approaches to solving standard problems. In particular, we present an intrinsically
parallel variant of standard multigrid. This "PSMG" method (parallel superconvergent multigrid) allows
all processors to be used at all times, even when processing on the coarsest grid levels. The sequential
version of this method is not a sensible algorithm. 



15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

80 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS 
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO 
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE 

ACKNOWLEDGlVIENTS SECTION. 





Multigrid Methods on Parallel Computers 
- a Survey on Recent Developments 

Oliver A. McBryan, Paul 0. Frederickson, Johannes Linden 
Anton Schuller, Karl Solchenbach, Klaus Stuben 

Clemens-August, Thole Ulrich Trottenberg 

CU-CS-504-90 December 1990 

Department of Computer Science 
University of Colorado at Boulder 
Campus Box 430 
Boulder, Colorado 80309-0430 

(303) 492-7514 
(303) 492-2844 Fax 
mcbryan@ boulder.colorado.edu 





Multigrid Methods on Parallel Computers - a 
Survey on Recent Developments 

Oliver A. McBryan1
'
5 Paul 0. Frederickson2 

Johannes Linden3 Anton SchulZe~ Karl Solchenbach4 

Klaus Stiiben3 Clemens-August Thole4 Ulrich Trottenberr/' 4
'
6 

1Center for Applied Parallel Processing, University of Colorado, Boulder, CO 80309-0430 
2RIACS, NASA Ames Research Center, Mail Stop 230-5, Moffet Field, CA 94035, USA 
3 Gesellschaft fiir Mathematik und Datenverarbeitung mbH, Postfach 1240, D-5205 Sankt Au-

gustin 1, West Germany 
4SUPRENUM GmbH, Hohe Str. 73, D-5300 Bonn 1, West Germany 
5Research supported by Air Force Office of Scientific Research, under grant AFOSR-89-0422 
6 Research funded in part by means of the Federal Ministry of Research and Technology (BMFT) 

(grant No. ITR8601 9) and the Ministry of Economy and Technology of Nordrhein-Westfalen 
(MWMT) (project No. 323-8605200). 



Abstract 

M ultigrid methods have been established as being among the most efficient techniques 
for solving complex elliptic equations. We sketch the multigrid idea emphasizing that 
multigrid solution is generally obtainable in time directly proportional to the number 
of unknown variables on serial computers. Despite this, even the most powerful serial 
computers are not adequate for solving the very large systems generated, for instance, 
by discretization of fluid flow in three dimensions. 

A breakthrough can be achieved here only by highly parallel supercomputers. On 
the other hand, parallel computers are having a profound impact on computational 
science. Recently, highly parallel machines have taken the lead as the fastest super
computers, a trend that is likely to accelerate in the future. We describe some of these 
new computers, and issues involved in using them. 

We describe standard parallel multigrid algorithms and discuss the question of 
how to implement them efficiently on parallel machines. The natural approach is to 
use grid partitioning. 

One intrinsic feature of a parallel machine is the need to perform interprocessor 
communication. It is important to ensure that time spent on such communication 
is maintained at a small fraction of computation time. We analyze standard parallel 
multigrid algorithms in two and three dimensions from this point of view, indicating 
that high performance efficiencies are attainable under suitable conditions on moder
ately parallel machines. 

We also dernonstrate that such performance is not attainable for multigrid on 
massively parallel computers, as indicated by an example of poor efficiency on 65,536 
processors. The fundamental difficulty is the inability to keep 65,536 processors busy 
when operating on very coarse grids. This example indicates that the straightforward 
parallelization of multigrid (and other) algorithms may not always be optimal. 

However, parallel machines open the possibility of finding really new approaches to 
solving standard problems. In particular, we present an intrinsically parallel variant 
of standard multigrid. This "PSMG" method (parallel superconvergent multigrid) 
allows all processors to be used at all times, even when processing on the coarsest 
grid levels. The sequential version of this method is not a sensible algorithm. 
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1 Introduction 

Parallel Computers. Supercomputers are the key to the simulation of a wide range 
of important physical problems. Such simulations typically require large numbers 
of degrees o"f freedom to provide sufficient resolution, particularly when engineering 
accuracy, rather than simple qualitative behavior, is required. In many cases one is 
currently limited by available computer resources, rather than by an understanding 
of the underlying physics. 

As an example, it is very desirable to simulate accurately the flow of air over 
a plane. Current aircraft design strategy involves the use of wind tunnels. How
ever wind tunnel testing is limited with respect to aircraft size avd Mach number, 
although extrapolations from smaller scale models can overcome some of the limita
tions. Planned wind_ tunnel testing for the Boeing 7J7 was greatly reduced thanks 
to advances in computational aerodynamics, substantially curtailing 7 J7 development 
time and, consequently, costs. But the computational techniques now in use ·do not 
sin1ulate the complete physics for the flow past the entire aircraft; they model various 
aspects of the flow that, when combined, give guidance to the design, but not answers. 
The major limitation is that as more of the plane is included in the simulation, the nu
merical grids become larger, requiring more processing power and memory. The same 
phenomenon is seen in weather forecasting, in oil reservoir simulation, in combustion 
studies, and wherever quantitative computations in three dimensions are performed. 

Major advances in many of these areas are expected as soon as computer power 
increases to about 1 Tflops ( = 1012 Flops). This would correspond to an increase 
of close to an order of magnitude in resolution in each of the coordinate directions 
compared to current machines. Conventional supercomputers with one or a few pro
cessors are limited by various factors, including the need to dissipate energy in a 
small volume, effects of the finite speed of light, and bottlenecks related to memory 
access. It is widely believed that parallel computers provide the only near-term hope 
of reaching this range of con1puter power. Furthermore, in most applications the cost 
per megaflop is a relevant issue. Massively parallel computers provide economies of 
scale not available to conventional computers larger than a PC. Parallel computers 
may be built from lower cost technologies, because the individual processors need not 
be extremely powerful. 

Because of these factors, parallel computers have been widely studied in recent 
years. Substantial research has been accomplished related to these n1achines, in
cluding both theoretical advances, involving algorithm design, and computational 
experiments. Hardware advances have reached the point where the fastest available 
supercomputers are now highly parallel machines. Furthermore, the combined efforts 
of many researchers have demonstrated that parallel computing is feasible. 

One disadvantage of a parallel computer, is that it is somewhat harder to program 
than a serial machine. Each processor must be assigned a distinct portion of the work 
to be performed, and substantial synchronization of the processors is then required in 
order to ensure that the results from individual processors are merged appropriately. 
The difficulties of programming parallel machines have spawned a whole range of new 
research areas for computer science and are a primary reason why this area has been 
so dynamic in recent years. 
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Multigrid (MG). For a wide class of problems in scientific computing, in par
ticular for partial differential equations, the multigrid (more general: the multi-level) 
principle has proved to yield highly efficient numerical methods. However, the prin
ciple has to be applied carefully: if the "multigrid components" are not chosen ap
propriately for the given problem, the efficiency may be far from optimal. This has 
been demonstrated for many practical problems. Unfortunately, the general theories 
on multigrid convergence do not give much help in constructing really efficient multi
grid algorithms, though some progress has been made in bridging the gap between 
theory and practice during the last few years. The research in finding highly efficient 
algorithms for non-model applications therefore is still a sophisticated mixture of the
oretical considerations, a transfer of experie~ces from model to real life problems, and 
systematical experimental work. The emphasis of practical research activity today 
lies - among others - in the following fields: 

• finding efficient multigrid components for really complex problems, e.g. 
N a vier-Stokes equations in general geometries 

• combining the multigrid approach with advanced discretization techniques: us
ing dynamic local multigrid refinements; adding artificial terms (viscosity, pres
sure, compressibility, etc.) in certain multigrid components; using "double" 
discretization, r-extrapolation, defect correction in connection with multigrid 
to obtain higher accuracy; using coarse-grid continuation techniques etc. 

• constructing highly parallel multigrid algorithms 

In this paper, we plan to deal only with the last topic. 

Parallel Multigrid. Multigrid methods are known to be "optimal", i.e. the num
ber of arithmetic operations that have to be performed to achieve either discretization 
accuracy or fixed accuracy is proportional to the number of discrete unknowns which 
are to be calculated [50]. This statement applies directly to standard sequential 
MG algorithms. With the availability of parallel computers, the question arises as 
to how well MG methods are suited for parallel computing. Several authors have 
studied the parallel implementation of multigrid on different parallel architectures 
(9, 10, 28, 29, 42, 51]. 

Sometimes one finds the conjecture that MG is - in some sense - an essentially 
sequential principle, or the opinion that full ~1G efficiency is obtained only on se
quential computers and that there is always a loss of efficiency for MG on parallel 
architectures. Certainly, standard MG requires a sequential processing of the different 
grid levels. We do not intend to give a final answer to this question, but we want to 
contribute to a clarification of the situation. 

First, one may distinguish the approaches where standard MG algorithms are 
utilized in the parallel context from those approaches where essentially new MG algo
rithms (or better: MG-like algorithms) are designed specifically for parallel comput
Ing. 

To the class of new MG-like algorithms belong also all those attempts where several 
multigrid levels are simultaneously processed. Such methods have been considered by 
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a number of authors [17, 19]. A breakthrough has, however, not yet been achieved; 
for theoretical reasons, one may also doubt whether these approaches can give a 
substantial gain. 

A new M G idea that provides significant progress for massively parallel machines 
has been introduced recently by the first author together with Paul Frederickson [13, 
14, 15, 16]. Here on each level several coarse grid problems are solved simultaneously 
in order to improve the MG-convergence. We sketch this "parallel superconvergent 
multigrid method" in Chapter 9. 

7 



2 Parallel Supercomputers 
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Figure 1: Classification of parallel and supercomputer architectures 
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There are many different approaches to the classification of computer architecture, 
especially with respect to parallel processing. A classification may be based on quan
titative aspects (the degree of parallelism or the granularity), the structure of the 
control-flow (SIMD, MIMD, data-driven, demand-driven), the hardware technology 
(VLSI, VHSIC, air cooled, liquid cooled) or the topology of the processing elements 
and the memory units. For a taxonomy of parallel designs see [46]. 

In this section, we - n1ore pragmatically than systematically - distinguish 8 classes 
of architectures which play an important role in the supercomputer world. The basic 
classification categories represented in Figure 1 are: 

1. SIMD vs. MIMD (vertical line) 
SIMD operation mode means that parallel functional units execute the same 
instruction sequence on different data. The two best-known realizations of the 
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SIMD principle are pipelined floating point units (class 2, 4, 6, 8) and array 
processors (class 5 and 6). 

The MHviD principle (class 3, 4, 7, 8) is the favorite operation mode for mul
tiprocessors based .on entire and independent processors. Each processor may 
execute a different instruction stream within the same application. 

2. Shared vs. distributed memory (horizontal line) 
One of the central problems to be solved in the design of multiprocessor systems 
is memory access. Basically, there are two possibilities for system organization: 

• shared memory: 
each processor has direct access to the total memory. 

• distributed memory: 
each processor has direct access only to its own private memory. 

Sometimes both memory organization types are combined in hierarchical mem
ory systems (e.g. RP3). 

Furthermore, in which category a system is placed, may reflect the user's view 
of the memory organization rather than its hardware realization. The BBN 
Butterfly and Myrias SPS-2, for instance, are multiprocessor systems with dis
tributed memory units which are interconnected by a network. Both machines 
offer a shared memory model to the user and are therefore often regarded as 
shared memory systems (class 3) although the hardware looks more similar to 
distributed memory machines (class 7). 

3. Scalar vs. pipelined floating point units (dashed horizontal line) 
Scalar floating point units are restricted in their floating point performance. 
Presently, the most cost effective way to achieve floating point rates of 20 - 50 
Mflops or more (per node) is by utilizing vector or scalar-pipelined processing 
(e.g. Weitek chips or Intel's i860 ). MIMD multiprocessors which target the top 
of supercomputer performance have to employ such processors as basic floating 
point units. Therefore, the most powerful architectures today are often two-level 
MIMD /SIMD multiprocessor systems (class 4 and 8). The efficient use of these 
architectures requires parallelism on two levels: the coarse grain parallelisn1 
related to the global MIMD structure and the fine grain parallelism (pipelining 
or vectorization) which is necessary to achieve maximum node performance. 
Similarly, the Connection Machine CM-2 is an SIMD /SIMD two-level system 
(class 6), also using fine grain vectorization. 

In the following we briefly describe these 8 classes of supercomputer architectures 
and name typical representatives of them. 

Class 1: scalar computers 
The "traditional" von Neumann computer architecture (SISD) is the basis for main
frames, n1inicomputers, and microcomputers. Using current hardware technology, the 
floating point performance of such architectures seems to be far from supercomputer 
performance, except on truly scalar algorithms. 
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Class 2: vector computers 
Historically the first machines to be called supercomputers were vector computers. 
Their hardware architecture is based on very fast arithmetic pipelines which support 
the rapid execution of vector instructions operating on all components of the vec
tor operands simultaneously. Vectors in that sense consist of components which can 
be processed independently. Hence, vector processing is a special form of parallel 
processing based on fine grain parallelism. Application codes have to be vectorized 
(i.e. operations are defined on vectors and certain data dependencies between op
erations are excluded) in order to exploit the potential speed of the hardware. The 
need for vectorization resulted in new vector algorithms and in special compiler tools 
( vectorizers) for the automatic vectorization of existing codes. , 

Examples of current vector machines are the CRAY Y-MP, the CYBER 205, the 
ETA-10, the Fujitsu VP, the N~C-SX, the Hitachi S-810, and the IBM 3090-VF. 

Due to the technological progress in VLSI chip development vector computer ar
chitectures today can also be realized in standard (microcomputer) technology. These 
systems are smaller, somewhat slower and considerably cheaper than the classical vec
tor computers and therefore are called minisupercomputers. The vector-minisuper
computers take advantage of the existing software and tools for vector machines -
some systems are even CRA Y-compatible. Examples are the Convex C2 and the 
SCS-40. 

Class 3: shared memory scalar multiprocessors 
Another way to increase computing performance is to corubine several single processors 
into a multiprocessor system and replace sequential processing by parallel processing. 
The optimal degree of parallelism (fine or coarse granularity) depends on the number 
and the power of the single processors as well as on the memory organization. The 
shared memory concept restricts the number of CPU s to about 8 or 16 today (e.g. the 
Alliant ). If the memory is accessed via a network rather than a direct interconnection 
a larger number of CPU s can be connected at the cost of longer access times. Examples 
are the IBM RP-3 and the CEDAR project (=clusters of Alliant systems). Further 
examples in this class are the Sequent, Flexible, Encore, Concurrent Computers, and 
(at the software level) Myrias machines. 

Class 4: shared n1emory vector multiprocessors 
The step from a single processor to a multiprocessor system (class 1 to class 3) is, of 
course, also possible and obvious for vector computers (class 2). Similarly as for scalar 
multiprocessors the performance is increased by combining several vector CPU s into 
multiprocessor systems, with of course the same memory access problems. The shared 
mernory concept limits the number of vector processors (typically today ::; 8 ). The 
parallelism on these systems is often used to increase the throughput of the system 
(running different jobs on different CPUs) but not the execution speed of an individual 
job. However, MIMD-parallel as well as SIMD-like processing is also possible (e.g. 
using macrotasking or microtasking constructs on the CRAY Y-MP). Representatives 
of this class are the multi-headed versions of the CRAY Y-MP, CRAY 2, and the 
ETA-10. 
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Class 5: scalar array processors 
The era of parallel computers started with array processors which perform one in
struction simultaneously on an array of operands (i.e. in SIMD mode). Recently 
these systems have been upgraded to massively parallel multiprocessors (with many 
thousands of processors). Each pro.cessor is relatively small and weak but the enor
mous degree of parallelism results in supercomputer performance. Typically, these 
systems are used for a restricted class of special applications such as image process
ing. We mention here the historical Illiac IV, the Goodyear MPP, the ICL DAP, the 
original Connection Machine CM-1, and the MASSPAR. 

Class 6: pipelined array processors 
The combination of ( SilVID) array and pipelined (vector) processing has been realized 
in the Connection Machine 2 which presently is the system with the highest floating 
point performance. rate for appropriate applications on regular data structures. 

Class 7: scalar distributed memory multiprocessors 
Today, multi processor systems with a large (and in principal unlimited) number of 
processors require that the memory units are physically associated with the processors 
(distributed memory). The basic unit of such a system, consisting of the CPU, the 
arithmetic coprocessor, the memory, and the communication unit will be called a node 
in the following. The first prototypes of this class were based on hypercube topologies 
and were built at the California Institute of Technology. Intel's iPSC/1 was the first 
commercial product, followed by Ncube and Symult. Recently Intel introduced its 
second generation based on more powerful nodes but the same hypercube structure, 
and is planing a third generation based on a grid rather than hypercube topology. 
Multiprocessor systems with transputer nodes have also entered the market (Meiko, 
Parsytec ). While listed earlier under shared memory systems, the Myrias SPS-2 
system belongs in this category based on its hardware design. 

Class 8: pipelined distributed memory multiprocessors 
These systems combine the advantag_es of the vector and the parallel processing con
cepts. The multiprocessor architecture is derived from the class 7 machines whereas 
the node architecture is taken from low-cost pipelined computers (class 2). The basic 
idea is to combine powerful pipelined nodes, with their attractive costjperforrnance 
ratio, into a multiprocessor system. Due to the size and the cost of a single node, 
their number is in practice limited to several thousands. The computational speed of 
the nodes in turn imposes strong requirements on the speed of the communication. 
If the communication problem is solved satisfactorily these machines are among the 
most powerful supercomputers existing today. Systems currently entering the market 
are SUPRENUM and the Intel iPSC /860. 

The classification of parallel con1puters in Figure 1 is by no means unique and 
complete. An important classification category which is not taken into account in 
Figure 1 is the hardware technology. Systems based on VHSIC hardware (like the 
CRA Y and ETA systems) are much more powerful (and expensive) than systems 
based on microcomputer technology (like the Alliant) although they belong to the 
same class. 
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Furthermore, there is an enormous variety in the current designs, particularly in 
the inter-connection topologies. While many interesting parallel machines involve 
only a few processors, we will concentrate in this paper on those machines which 
have moderate to large numbers of processors. Important classes of machines such 
as the CRAY Y-MP, CRAY 2 and ETA-10 are therefore omitted from many of the 
subsequent discussions. 

2.2 Machine Characteristics of some Multiprocessors 
There are at least 100 parallel computer projects (classes 3 to 8) underway at this time 
worldwide. While some of these projects are unlikely to lead to practical machines, 
a substantial number will probably lead to useful prototypes. In addition, several 
commercial parallel computers are already or have been in production (e.g., ICL DAP, 
Denelcor HEP, Intel iPSC, NCUBE, FPS T-Series, Connection Machine, MASSPAR, 
SUPRENUM, Symult 2010, Myrias SPS-2, Evans and Sutherland ES-1, Meiko, Par
sytec) and more are under development. One should also remember that the latest 
CRAY computers, (e.g. CRAY X-MP, CRAY 2 and CRAY Y-MP) involve multiple 
processors, and other vector computer manufacturers such as ETA Systems, NEC, 
Fujitsu and Hitachi have similar strategies. 

In this section we will look briefly at the characteristics of several parallel machines 
that were used to measure multigrid performance in later chapters. The machines 
considered here in more detail are the Intel iPSC, the Connection Machine CM-2 and 
the SUPRENUM-1. 

2.2.1 Intel iPSC 

The Intel iPSC was the first commercial hypercube MIMD-computer, and has been 
the most widely available highly parallel computer in recent years. Built from 128 In
tel 80286 processors, peak computer power of the original iPSC/1 is under 10 Mflops, 
yet the iPSC was the basis for a large number of useful experiments in parallel com
puting. The iPSC /2 computer is a second gen.eration machine that provides greatly 
increased processing power and communication throughput. Each node contains an 
80386 microprocessor with up to 8 ~Ibytes of memory (extendible to 16Mbytes with 
64 processors). There are three available numeric co-processors: an Intel 80387 co
processor (300 Kflops ), a Weitek 1167 scalar processor (900 Kflops) and a VX vector 
board (6 Mflops double precision, maximum of 64 nodes). Thus the top-rated system 
has 64 nodes capable of 424 Mflops double precision ( 64 bit) and 1280 Mflops sin
gle precision (32 bit). Special communication processes allow message circuits to be 
established between remote processors without intervention from intermediate nodes. 

In fall1989 Intel announced an i860-based version of the older iPSC/2 hypercube 
system. These iPSC /860 systems are basically standard iPSC /2 hypercubes with the 
node processors replaced by Intel i860 processors. In terms of raw floating point per
formance the peak rate is thereby increased to 60 Mflops per node ( 64 bit). In practice 
it is unlikely that more than 40 Mflops per node can be realized due to the memory 
model used by the i860. Some simple vector type kernels, hand-coded in assembler, 
are currently running from 28 to 38 Mflops/node. Well-designed Fortran programs 
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are currently yielding about 3-4 Mflopsjnode due to the state of the i860 Fortran 
compilers. Several major i860 compiler efforts are underway and will undoubtedly 
improve substantially on the early results. Because the communication facilities of 
the iPSC /860 are those of the iPSC /2, the system is constrained to a maximum of 
128 nodes. 

While the iPSC /860 utilizes the slow iPSC /2 communication hardware and soft
ware, communication proves to be much faster on the i860 system than on the iPSC /2. 
This is because most of the message startup communication overhead is software over
head involved in negotiating the communication protocol. Because the i860 is so much 
faster than the 80386, the software overhead is correspondingly decreased. The effect 
is to reduce messaging time by about a factor of three. • 

The iPSC /860 actually supports heterogeneous boards - a mixture of i860 and 
80386 boa~ds is allowed. This permits special 80386 nodes to take advantage of the 
flexible interfaces to graphics, disk and other peripherals available to that processor. 
For example 780 l\1byte disks may be attached to such nodes via a 4 Mbyte/sec SCSI 
interface. Frame buffers, VME bus devices and Ethernet also plug into these boards. 

Intel has also announced plans to develop a rectangular version of the iPSC /860 
- the iPSC /3. This system is very similar in architecture to the earlier Symult 2010 
system. There are 8 communication paths per node, allowing 4 bidirectional channels 
as required for a two-dimensional grid. With the new communication structure, the 
iPSC will be freed from the constraint of a maximum of 128 nodes. Indeed Intel has 
announced a 2048 processor version of the iPSC /3, called Touchstone. A prototype 
to be completed in spring 1991, will have 576 processors. 

2.2.2 Connection Machine 

The Connection Machine CM-1 designed by Thinking Machines Corp., has 65,536 
1-bit processors, though this may be regarded as a prototype for a machine that 
might have 1 M processors. While designed primarily for artificial intelligence work 
and image processing, this machine proved to have potential applications to scientific 
computing and database applications. The later CM-2 computer adds 2048 Weitek 
floating point processors and 8 Gbytes of memory, to provide a powerful computer for 
numerical as well as symbolic computing. The CM computers are Sll\1D machines. 
All processors receive the san1e instruction on each cycle. Logic is supported by allow
ing individual processors to skip the execution of any instruction, based on the setting 
of a flag in their local memory. The CM machines are based on a hypercube com
munication network, with a total communication bandwidth of order 3 Gbytes/sec. 
Communication is by worm-hole type routing. The system supports parallel I/0 to 
disks at up to 320 Mbyte/sec, and to frame buffers at 40 Mbytejsec. 

Connection Machine software consists of parallel versions of Fortran, C and Lisp. 
In each case it is possible to declare parallel variables, which are ~utomatically al
located on the hypercube. Programs execute on a front end machine, but when 
instructions are encountered involving parallel variables, they are executed as parallel 
instructions on the hypercube. The system supports the concept of virtual proces
sors. A user can specify that he would like to compute with a million (or more) 
virtual processors, and such processors are then similar to physical processors in all 
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respects except speed and memory size. A typical use is to assign one virtual pro
cessor per grid point in a discretized application. This provides a very convenient 
programming model. Parallel global memory reference is supported using both reg
ular multi-dimensional grid notations (NEWS communication) and random access 
(hypercube) modes. 

The Connection Machine is one of the few examples where a program from a 
serial machine (e.g. work station) or from a CRAY may be moved to a parallel 
machine and run essentially without change. The CM-2 Fortran is Fortran-77 with 
the addition of the array extensions of Fortran 90. All array data types and operators 
are implemented as parallel objects or operators on the CM-2. In the case of Fortran-
77 programs, a preliminary vectorizer is available that prod-qces Fortran 90 as output. 
Because of the SIMD architecture no synchronization instructions are required. 

It is extre_mely rare to approach the 24 Gflops peak rate of the CM-2. In practice 
one attains about 10% to 20% of that rate. In part this is because in addition to 
normal hypercube communication (e.g. to nearest neighbors in a grid) there is also 
extra communication required for every floating point operation. Since the floating 
point operations are off-chip, each of the 32 bit-serial processors that share a Weitek, 
must send its data to the Weitek for processing. Furthermore, since the data arrives 
bit-serially, it needs to be "transposed" so as to be presented as floating point data 
to the Weitek. These two steps between the processors and the Weitek units account 
for much of the performance loss. Standard numerical algorithms such a.s relaxations 
or conjugate gradient iterations perform at from 2 to 4 Gflops, which is also typical 
of performance on regular-grid evolution problen1s. Only in situations where num
bers can be deposited in the 64 Weitek registers (shared by 32 processors), and then 
computed on for a substantial time without leaving the Weitek, can the theoretical 
speed be approached. For example, parallel polynomial evaluation proceeds at up to 
20 Gflops - which ensures that transcendental functions are extremely fast on the 
system. A new Fortran compiler for the CM-2 now supports the programming of the 
Weitek processors and allows applications to run at 4-6 Gflops. 

2.2.3 SUPRENUM 

The German SUPRENUM project involves coupling up to 256 processors ("nodes") 
with a two-level network of fast busses. The concept combines the flexibility of an 
overall MIMD system with the cost-effectiveness of SIMD-vector processing in each 
node. A node consists of a standard microprocessor CPU, 8 Mbyte of private memory, 
a fast floating-point vector unit (10 Mflops peak perfonnance, 20 Mflops with chaining) 
and dedicated communication hardware. 

Up to 16 of these computing nodes are cornbined into a "cluster" using a bus 
called the cluster bus (256 Mbytes/ sec). Each cluster also contains a local disk, a 
disk controller node, a monitor node which supports performance measurements , a 
communication node for the connection to the upper bus level (the SUPRENUMBUS). 

As shown in Figure 2, 16 clusters are connected by a 4D hypercube structure 
(= 4 x 4 torus) of serial high-speed SUPRENUMBUS's. 

The SUPRENUM-1 prototype is completed by a front end system which is used 
for operating and maintaining the high performance kernel as well as for software 
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clusterbus 

link to 
SUPRENUMBUS 

Figure 2: Structure of the SUPRENUM-1 prototype with 256 nodes in 16 clusters 

development. 
Essential investments in the SUPRENUM development have been made for system 

and application software. Figure 3 gives an overview of the SUPRENUM system 
software, showing that the abstract S"GPREKTJM architecture is the central model 
here. It is described in Section 2.3. 

The very high speed of the bus network makes this a very interesting machine 
for a wide range of applications, including those requiring long-range communication. 
No more than three communication steps are ever required between remote nodes. 
A prototype containing 4 clusters ( 64 processors) is already in operation, and a full 
machine with 16 clusters will be available by the end of 1990. 

2.3 A Software Concept Based on Message-Passing 

For MIMD multiprocessor computers with local memory, a software concept has 
turned out to be suitable that is based on a process system and on a message-passing 
communication handling. The process concept for SUPRENUM (the so-called abstract 
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Operating system 

Performance 
analysis 

Abstract SUPRENUM architecture 

Programming environment 
Software tools 

Figure 3: The SUPRENUM system software 

SUP RENUA1 architecture) is a dynamic one which is characterized by the following 
elements: 

• Processes are autonomous program units which run in parallel. 

• Processes can terminate themselves, and can create but not terminate other 
processes. 

• Processes communicate only by exchange of messages, and no shared memory 
is available. 

• Applications are started by one initial (or host) process typically running on the 
front end machine. 

• In arithmetic expressions and communication instructions, array constructs are 
supported. 

• The user-defined process system is homogeneous and independent from the ac
tual hardware configuration. 
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Processes are mapped to the real hardware at run-time. In SUPRENUM a mapping
library [31 J provides optimized mapping strategies for some standard process systems 
(like trees, rings, grids) and uses heuristical strategies for irregular process structures. 
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3 Introduction to Multigrid 

In the following, we briefly describe the basic structure of a general multigrid method 
(abstracted from [38], Section 2). For more details and discussions, we refer to the 
available introductory publications on multigrid methods.· In particular, we recom
mend the proceedings [24], which, besides a collection of several specialized papers, 
contain three introductory contributions [5, 22, 50]. Other recommendable publica
tions are [8], which is a more recent one of introductory type, and [23]. A multigrid 
bibliography up to 1986 can be found in [4]. 

In this paper we do not consider multigrid methods in a finite element context 
(see [1, 39, 43J.or [4] for further references). 

3.1 The Basic Idea and Algorithmical Structure 
We first consider the case of a linear, scalar elliptic boundary value problem. The 
discretization of such a problem on a uniform grid of mesh size h yields a linear 
NxN-system of equations (N being proportional to 1/h2

) which we denote by_ 

(1) 

Here, one may regard Lh as a matrix and uh, fh as vectors. In the context of multigrid 
methods, however, it is more convenient to consider (1) as a grid equation, i.e., Lh as 
an operator acting on grid functions and uh, Jh as grid functions. Here and in the 
following we will write exact solutions of grid equations in upper case letters, e.g., the 
solution of ( 1) will be denoted by uh. 

Solving ( 1) by means of classical methods such as elimination or relaxation is 
rather expensive if the number of unknowns is large. Standard relaxation methods 
are particularly inefficient. For instance, in the case of second order 2D elliptic equa
tions, solving (1) by means of Gauss-Seidel relaxation (up to a fixed accuracy) needs 
computational work which is proportional to .lV2 or 1/h4

• Using accelerated methods 
like SOR, the best one can do is to reduce the work to be proportional to N 312 which 
is still very unsatisfactory in practice. 

On the other hand, relaxation methods of Gauss-Seidel type are highly efficient in 
terms of error smoothing. To demonstrate this: consider point Gauss-Seidel applied to 
the discretized Poisson equation, which means that we solve the following equations 
point by point in some order 

h 1( h 1 h h h 2 h U;J· = - U.; 1 J. I U.;..l..l J. + U.; . 1 + U· J. I 1 - h f.;J·), • 4 •- J • I 1 • 1J - t j T • 
(2) 

using the most recent approximations for the values on the right hand side. Thus, in 
terms of the error vh = Uh - uh, 

h 1(h h h h) 
vij = 4 vi-1,j + vi+l,j + vi,j-1 + vi,j+1 · 

This is just an averaging process, which explains heuristically why the error becomes 
smooth after very few relaxation sweeps. Although the situation here is quite special, 
relaxation methods with similarly good smoothing properties exist under quite general 
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circumstances. In fact, there is a close relation between ellipticity and the possibility of 
efficient smoothing ( cf. Section 3.3). However, the simple point Gauss-Seidel method 
will usually not suffice as an effective smoother. 

The goal of any multigrid method is to exploit smoothness by the use of coarser 
grids. Since the errors become smooth by relaxation (rather than the approximations 
themselves), coarse-grid corrections make sense only in terms of the error. Note that 
for any approximation u~ld of (1 ), its error Vh == Uh - u~zd satisfies the correction 
equation Lhvh == rh with the residual rh == fh - Lhu~ld. Now, if Vh is sufficiently 
smooth, it makes sense to approximate it by solving a coarse-grid-correction {CGC) 
equation of the form 

(3) 

where the (formal) index H marks coarser-grid quantities. Here, LH denotes a reason
able discretization of the same differential operator on the coarser grid and If! denotes 
some restriction which maps fine-grid functions by local averaging into coarse-grid 
functions. The coarser grid itself may be co::1structed by simply doubling the mesh
size h in all coordinate directions: H == 2h. This coarsening strategy, which is the 
one most frequently used, is called standard coarsening. However, since other choices 
will be discussed later, we keep the above formal notation. 

By interpolating the solution yH of (3) back to the finer grid (using some in
terpolation operator I'H ), we finally obtain a new approximation to the solution of 
(1 ): 

h - h I Ih yH 
Unew- Uozd T H • 

Summarizing, we present the formal structure of a general (iterative) two-grid method. 
Starting with u~zd, one iteration step (one cycle) of such a method proceeds as follows 
( cf. Section 2.3 in [50]): 
(1) Pre - smoothing : Compute uh by applying v1 ~ 0 sweeps of a given relaxation 

method to (1) with starting guess u~zd: 

uh == RELAXv1 (u~zd; L\fh) 

(2) Coarse - grid correction : 
-Computation and restriction of residual rH == I/!(Jh- Lhuh) 
- Computation of the exact solution VH of L HvH == rH 
- Interpolation and correction uh == uh + I'H v H 

(3) Post - smoothlng : Compute u~ew by applying v2 '2::: 0 sweeps of the 
given relaxation method to (1) with starting guess uh: 

For relaxation methods with good smoothing properties, v1 and v2 are small numbers, 
typically 1 or 2 ( cf. the discussions in later sections). Such a two-grid method, 
although reflecting the main principles, is generally not suitable for an efficient use 
in practice. Solving the CGC equation ( 3) is still too expensive because the "coarse 
grid" is still very fine. However, as the method is iterative anyway, there is no need 
to compute VH exactly. The most natural way to approximate VH is to apply the 
same idea as described above to the CGC equation itself, using a still coarser grid. 
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More precisely, we replace V H by an approximation vH which is obtained by applying 
1 ~ 1 two-grid cycles to (3), starting with the zero grid function as first guess. By 
extending this idea in a recursive way to a sequence of coarser and coarser grids, we 
finally obtain a complete multigrid cycle. For more details and a flow chart see Sections 
4.1, 4.2 in [50]. The parameter 1 controls the accuracy to which the CGC equations 
are approximated. The smallest possible choice, 1 = 1, is usually sufficient. Safer, 
but really needed only in "less regular" situations, is the choice 1 = 2 ( cf. Section 
4.2). Corresponding cycles are often referred to as V- and lV-cycles, respectively. In 
practice, for reasonable multigrid methods, larger values of 1 are not needed. Apart 
from V- and W-cycles, we also consider F-cycles in some parts of this paper. The 
F-cycle neyds more work than a V- but less than a W-cycle. It has been described, 
for instance, in [52]. 

3.2 Extensions of the Basic Idea 

In the following, we introduce two important extensions of the procedure outlined 
above, namely, the treatment of nonlinear equations by means of the F AS-approach 
and the full multigrid (FMC) strategy. For more details, see [6], [50]. 

3.2.1 Nonlinear Problems 

One obvious way to solve nonlinear problems is to linearize the given differential 
problem globally (e.g., by a Picard-lil~e method: freezing non-linear expressions to old 
approximations, or by Newton's method, which is generally more robust) and then 
to solve the resulting sequence of linear problems by a linear multigrid method of 
the form described above. Another possibility is to suitably generalize the ideas de
scribed in the previous section. The resulting approach is called the full approximation 
scheme (FAS) and is - from a multigrid point of view - not only conceptually more 
straightforward (no global linearizations are needed) but in many cases also more 
efficient. 

Assuming (1) to be nonlinear in u\ we point out that smoothing can be performed 
as in the linear case merely by replacing relaxation by corresponding non-linear vari
ants. Due to the lack of a superposition principle, however, we can no longer compute 
corrections on the coarser grids as in the linear case: instead of con1puting "correction 
quantities", we have to solve for "solution quantities". We still have to interpolate 
smooth quantities back to the finer grids to update old approximations. This leads to 
the following two-grid process for nonlinear problems. Its generalization to a complete 
FAS multigrid cycle is done in the same straightforward way as in the linear case. 
(1) Pre - smoothing : Compute v;h by applying v1 ~ 0 sweeps of a given 

(non-linear) relaxation method to (1) with starting guess u~zd: 

(2) Coarse- grid correction : 
- Computation and restriction of residual rH =If! (fh- Lhu;h) 
- Restriction of current approximation v;H = IIf u;h 
- Computation of the exact solution uH of LH UH = rH + LHuH 

20 



- Computation of correction yH = uH- v;H 
- Interpolation and correction uh = uh + I'H v H 

(3) Post - smoothing : Compute u~ew by applying v2 2:: 0 sweeps of the 
given relaxation method to (1) with starting guess uh: 

uh = RELAXZ-12(uh· Lh fh) 
new ' ' 

Compared to the linear case, only the computation of the coarse-grid correction 
VH has changed. The fine-to-coarse transfer of the temporary approximation v;h is 
done by means of some local averaging .ll~ which may be different from If!. One 
possibility is to define v;H at each coarse-grid point to have just the value of v;h at 
the corresponding fine-grid point (straight injection). This simplest definition is the 
standard one and can safely be used unless the solution of (1) is expected to be 
strongly varying with respect to the scale of the grid. 

Note that, for linear problems, the new procedure is exactly equivalent to the 
former one (independent of the concrete choice of II~). Note also that, assuming 
straight injection for .Uf, convergence of the above cycle implies that the solution 
UH of the coarse-grid equation approaches the fine-grid solution Uh (injected to the 
coarser grid) rather than the solution of LH uH = jH. 

3.2.2 The Full Multigrid Approach 

Once a multigrid cycle with all its necessary components is specified, it can be used 
to solve a given problem (1) iteratively. As with any other iterative method, there is 
the significant problem of finding a good first approximation. A convenient approach 
to finding a reasonable first guess is the combination of an iterative solver with the 
idea of nested iteration. This essentially means that, before starting to iterate on the 
given grid, one computes approximations on coarser grids which are interpolated to 
finer grids until one finally reaches the actual computational grid. 

The combination of this idea with multigrid iterations (in contrast to its combi
nation with SOR, say) is called the full multigrid (FMC) method. Because of the 
h-independent convergence of proper multigrid iterations, a fixed number of iterations 
on each level is sufficient. Moreover, performing just one cycle on each level (includ
ing the finest one), will generally suffice to yield a final approximation of (1) which 
is numerically correct up to h-truncation error without any further iterations on the 
:finest level ( cf. Section 6 in [50]). 

3.3 Multigrid Components, Performance Analysis; Some 
General Remarks 

The above methods provide only formal schemes. For a practical application the vari
ous components (e.g., discretizations on the finest and the coarser grids, relaxation for 
smoothing, coarsening strategy, inter-grid transfer operators, etc.) must be specified. 
Generally, this specification is by no means obvious. This is because a proper choice 
of the different components depends on certain characteristics of the differential and 
discrete problem (ellipticity, relative size of coefficients, singular perturbations, discon
tinuities, etc.) and often also on the solution itself (singularities, solution-dependent 
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coefficients, non-uniqueness, etc.). A detailed discussion would go beyond the scope 
of this paper. We want to give, ho'\vever, a brief review of some basic but important 
techniques which have turned out to be quite useful in practice. 

What is needed is some kind of realistic a priori analysis which, for a concrete 
problem, allows one to estimate the interactions between the possible multigrid com
ponents and to predict their influence on the final multigrid performance. The most 
natural tool is Fourier analysis, because in terms of Fourier co1nponents one can most 
easily distinguish low and high frequency components of any grid function and explic
itly investigate their correct treatment by the CGC step and the relaxation separately. 
However, the application of Fourier analysis is feasible in practice only under certain 
simplified assumptions: ; 

One possibility is to restrict attention to certain fundamental classes of model prob
lems such as li~ear, symmetric, constant coefficient problen1s with Dirichlet, Neumann 
or periodic boundary conditions on rectangular domains. For such problems, optimal 
multigrid strategies have been developed which turned out to be more efficient than 
classicial solvers by orders of magnitude [50]. The major quantities which can ex
plicitly be computed by means of Fourier analysis and which have been used for a 
systematic comparison of different multigrid strategies, are the smoothing factor JLv 
and the two-grid convergence factor Pv· The latter quantity is just the factor by which 
the error is reduced by one two-grid cycle using v relaxation sweeps for smoothing, 
while JLv is an approximation to Pv assuming "optimal" CGC behavior. From a dif
ferent point of view, the smoothing factor can be interpreted as the factor by which 
high frequency error components are damped by v relaxation sweeps. 

Since we will present some concrete results on the above quantities Pv, JLv in the 
following chapter, we want to point out their significance: JLv allows one to distinguish 
different relaxations with regard to their smoothing qualities (roughly, a value of p1 

around 0.5 indicates quite good smoothing, while a value close to 1 is absolutely un
acceptable). The interplay of smoothing and coarse-grid correction is reflected in the 
more precise two-grid factor Pv· Thus, significant deviations between these two quan
tities indicate that the coarse-grid components or the inter-grid transfers (or both) 
may have been chosen improperly. Assuming that the "nature" of all intermediate 
grid problems is comparable to the finest grid problem, Pv can be expected to yield a 
quite precise prediction for the convergence rate of a corresponding complete cycle, at 
least of the rV-cycle. In practice, provided the coarse grid components are suitable, 
JLv gives a sufficient prediction of the behavior of the final multigrid cycle, and is much 
easier to compute than Pv· 

In more complex situations, the above analysis can no longer be applied rigorously. 
In such cases, however, local (or interior) Fourier analysis which has been introduced 
and extensively used by A. Brandt [6], is still applicable. 

The reader who is interested in more details is referred to [6] which contains 
important discussions on this issue and, in particular, general guidelines for designing 
relaxation schemes for complex situations. Concerning details on the rigorous "model" 
analysis mentioned before, see [50]. 
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3.4 Some Special Considerations for Poisson-like Equations, 
Red-Black-Relaxation 

By Poisson-like equations, we mean equations of the form 

a(x,y)uxx + b(x,y)uyy = f(x,y) (4) 

with positive functions a, b and a ~ b everywhere in a given domain (similarly in 
3D). In the sense mentioned in the previous section, the performance of a multigrid 
method does not depend sensitively on the concrete values of the coefficients or on the 
shape of the dornain ( cf. Section 10 in [50]) or on the particular boundary conditions. 
In particular, the incorporation of specific boundary conditions requires only proper 
algorithmical adaptations at the boundary itself. 

Thus, in order to devise a reasonable multigrid scheme for nearly isotropic prob
lems, discretized by means of standard symmetric differences on a uniform grid of 
mesh size h, we may study the corresponding difference equations of the most simple 
isotropic model equation, Poisson's equation: 

11u = f(x, y), 

disregarding boundary conditions. Note that if the discretization step sizes are dif
ferent in each direction, we have a discrete anisotropy, and the discussion of the next 
chapter applies. For the isotropic case, plain point Gauss-Seidel relaxation has quite 
good smoothing properties. Thus, for any discrete isotropic problem ( 4), it appears 
to be reasonable to use Gauss-Seidel relaxation (with "lexicographic" ordering of grid 
points, say) for error smoothing in conjunction with standard coarsening. 

More precisely, one may use a sequence of uniform grids of mesh size h, 2h, 4h, ... , 
up to a coarsest grid which contains as many points as necessary for technical reasons, 
along with the corresponding symmetric discretizations of the same differential oper
ator ( 4) and Gauss-Seidel as smoother on each level. The inter-grid transfer operators 
are usually not critical. One can safely use linear interpolation for the corrections 
and some local averaging in the residual transfers, e.g., the so-called full weighting. 
This is defined (in matrix terminology) as the transpose of linear interpolation scaled 
such that a constant grid function is mapped into the same grid function on the next 
coarser grid. In stencil notation the full weighting operator can be written as 

In order to understand the above method more quantitatively, one has to perform 
some Fourier analysis as pointed out before. Here, in Table 1, we give only some 
results for Poisson's equation in terms of J.Lv and Pv for different values of v. In 
particular, we see that J.Lz = 0.250 and p2 = 0.193. Due to the discussions on the 
significance of these quantities in the previous section, we can conclude that we have 
excellent smoothing and a proper coarse-grid correction. Also, there are no negative 
influences from much coarser grids, as the predicted convergence is precisely obtained 
in practice when using a complete multigrid cycle. We could have also used v = 3 or 
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problem: ~u = f( x, y) 
lexicogr. red-black 

1/ f-Lv Pv f-Lv Pv 
1 0.500 0.400 0.250 0.250 
2 0.250 0.193 0.063 0.074 
3 0.125 0.119 0.034 0.053 

Table 1: Results obtained by Fourier analysis 

even v = 1 smoothing steps for smoothing instead of v 2;· a careful comparison of 
the numerical work per cycle versus convergence speed, however, shows that v = 2 is 
the most efficient choice. 

The above multigrid strategy is just one of a number of possibilities. In Table 1, 
we give one more example which is only slightly different from the above strategy. The 
only difference is that the order of points in the Gauss-Seidel relaxation is changed to 
"red-black", i.e. the points are divided into "red" and "black" points in a checkerboard 
fashion, :first all red points are relaxed and then all black points. The resulting method 
is seen to be essentially more efficient. Using v = 2 smoothing steps in the multigrid 
process will give considerably more than one digit of error improvement per multigrid 
iteration. In particular, the latter algorithm is among the most efficient known on 
single processor computers: it is more efficient than the one above by about 50%. And, 
as we will see in Chapter 5, "red-black" relaxation is well suited for vectorization and 
parallelization. 
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4 More Sophisticated Multigrid Techniques 

In this chapter (abstracted from [38), Section 3) we would like to discuss certain 
situations where the basic multigrid approaches as sketched in the previous chapter 
have to be modified and extended. Such situations are 

• anisotropic operators, particularly in 3D 

• influences of first order differential terms 

With respect to systems of equations, we refer to [ 6]. 

4.1 Anisotropic Operators 

We call equation ( 4) anisotropic if the coefficients are very different frorn each other 
in significant parts of the computational domain. This is a simple example which we 
can use to demonstrate that a careless choice of the necessary multigrid components 
may lead to quite inefficient solvers. If we apply the algorithm of the previous section 
without change, it \vill seriously deteriorate. In fact, the stronger the anisotropy, the 
slower the convergence. In our discussion, we will distinguish the 2D- and the 3D-case. 

(a) The 2D- case: 
Let us consider the anisotropic model equation 

c U:z::z: + Uyy = j (X, y) (5) 

with some constant 0 < c <t: 1, discretized on a uniform grid as above. Using pointwise 
Gauss-Seidel relaxation, the error version of (2) changes to 

V~. = 1 ( h h h h ) 
'J 2(1 + c) c vi-l,j + c vi+l,j + vi,j-1 + vi,j+1 (6) 

which is essentially an averaging process in the y-direction. Consequently, after a few 
relaxation sweeps, errors will become smooth in the y-direction, not, however~ in the 
x-direction. If, on the contrary, c >> 1, it is just the other way around. Obviously, 
such errors can no longer be efficiently reduced by means of a coarser grid which is 
obtained by doubling the mesh size in both directions. Point relaxation and standard 
coarsening is not a reasonable combination for anisotropic problems! There are two 
possible remedies. 

Line - relaxation: The first possibility is to keep standard coarsening but to change 
the relaxation procedure such that errors become smooth in both coordinate directions. 
This can be achieved by solving simultaneously for those unknowns which are strongly 
connected. That is, use Gauss-Seidel line-relaxation ·with the lines parallel to the 
y-axis (y-line relaxation) if c << 1, and use x-line relaxation if E ~ 1. 

Semi - coarsening: Alternatively, one may keep point relaxation if one changes 
the coarsening strategy according to the one-dimensional sn1oothness of errors. Define 
the coarser grid by doubling the mesh size only in those directions in which errors are 
smooth. That is, double the mesh size only in the y-direction (y-semi coarsening) if 
c ~ 1 and in the x-direction if E ~ 1 (x-semi coarsening). 
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Both approaches can be directly applied to anisotropic variable coefficient prob
lems ( 4) with the proviso: £ << 1 ( £ >> 1) represents the case that in some parts of 
the computational domain a~ b (a>> b) while in the remaining parts a~ b. 

In practice, usually the first approach is used because it leads to quite simple 
algorithms even if we do not assume anything about the relative size of the coefficients 
a and b, i.e., if we allow that both a ~ b and a >> b hold in different parts of 
the computational domain. In such situations, line-relaxation can still be used in 
connection with standard coarsening if it is applied alternatingly, i.e., one smoothing 
step is just one x-line sweep followed by one y-line sweep. The resulting multigrid 
method will, in particular, converge rapidly also in case of isotropic problems; it is, 
however, somewhat more expensive than the simpler scheme using point relaxation. 

In contrast to this, the second approach requires, in the case of arbitrary coein
cients, semi-coarsening of different direction_s in different parts of the domain depend
ing on the local sizes of the coefficients. The corresponding algorithms are rather 
complicated, because the control of a proper coarsening has to be done in an auto
matic and adaptive way. Note that, even in cases of only "one-sided" anisotropies, 
the recursive coarsening process will not be as straightforward as in the first approach 
because the coarser grids are no longer uniform. For instance, in the case of ( 5) and 
£ ~ 1, the first coarser grid has the mesh sizes h and 2h in the x- and y-direction, 
respectively. The symmetric discretization of£ U:z::x: + Uyy on this grid is given by 

Relaxing the CGC equation py pointwise Gauss-Seidel means, in terms of the error, 

H 1 ( H H H H) 
vij == 2(1 + 4£) 4£vi-1,j + 4£vi+l,j + vi,j-1 + vi,j+1 • 

Note that, compared to (6), the anisotropy has decreased. Thus, in constructing the 
next coarser grid, one has to distinguish two cases: If 4£ ~ 1 we have to continue by 
y-coarsening, but if 4£ ~ 1 one should continue by standard coarsening. 

In Table 2, we summarize some concrete results for different strategies to solve 
(5) with various ranges of£. Here, we only consider standard coarsening. Concerning 
point relaxation, the order of points is assumed to be red-black. Correspondingly, in 
line-relaxation, the lines are scanned "zebra-wise", i.e., one first relaxes every other 
line, and afterwards the remaining ones. Grid transfers are assumed to be as in the 
previous section, i.e., linear interpolation for corrections and full weighting for residual 
transfers. 

We note that, as before, J.Lv and, in particular, Pv very precisely predict the con
vergence of corresponding complete multigrid cycles. The results clearly show that 
the use of point relaxation is limited to values of c which are not too different from 
1 (not much larger than 2 or much smaller than 0.5, say). On the other hand, y-line 
relaxation is mainly suitable for £ :::; 1, while alternating line relaxation gives an effi
cient method for any value of £. All results directly carry over to variable coefficient 
problems by looking at the worst frozen coefficient cases. 
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problem: cU:z::z: + Uyy = j( X, y) 
relaxation ll c f.Lv Pv c /Lv Pv 

point 3 0.5 0.088 0.088 2 0.088 0.088 
y-line 2 0.053 0.028 0.198 0.198 

alt-line 2 0.020 0.013 0.020 0.013 
point 3 0.1 0.564 0.564 10 0.564 0.564 
y-Iine 2 0.053 0.047 0.683 0.683 

alt-line 2 0.041 0.038 0.041 0.038 
point 3 0.01 0.942 0.942 100 0.942 0.942 
y-line 2 0.053 0.052 0.961 0.961 

alt-line 2 0.051 0.051 0.051 0.051 

Table 2: Results obtained by Fourier analysis 

(b) The 3D - case: 
The 3D-case is considerably more involved than the 2D-case. We do not want to 

discuss all possible 3D-approaches, but rather point out some important differences to 
the 2D-situation. For a detailed investigation we refer to [52] which gives a complete 
survey on the various 3D-strategies. 

We have stated above that, in 2D-problems, one can always use standard coars
ening, if it is combined with alternating line relaxation for smoothing. This may 

, make one believe that one obtains a similarly "robust" multigrid method in 3D by a 
straightforward generalization, namely, by using line relaxation now alternating with 
respect to all 3 coordinate directions. This is, however, by no means true! To outline 
some aspects, let us consider the 3D-model equation 

auza: + buyy + CUzz = f(x,y,z), (7) 

with at least one coefficient being significantly different from the others (otherwise 
we can use point relaxation for smoothing). The general rule which carries over from 
the 2D-case is that we obtain good smoothing of errors in all coordinate directions if 
we relax all strongly coupled unknowns simultaneously. For instance, if a ~ b ~ c, 
we may safely use z-line relaxation. Consequently, (triple) alternating line relaxation 
will provide a perfect smoother independent of which coefficient is large as long as 
the remaining two are approximately the same. 

If, however, a ~ b ~ c, the situation is different as (according to the above rule) 
we now have to use (y, z )-plane relaxation. In contrast to line relaxation (which leads 
to simple tri-diagonal systems of equations), such a relaxation cannot be efficiently 
performed by standard solvers for banded matrices. In fact, the only way to perform 
such a relaxation efficiently is by using a (2D-) multigrid method for each plane. 
(Some recommendations on how to proceed are contained in [52).) An alternative to 
the use of plane relaxation is, similar to the 2D-case, to use point relaxation instead 
but combined with (y, z )-semi coarsening (i.e., doubling the mesh sizes with respect 
to y and z only). 
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Finally, if a <t: b <t: c, the situation is similar. As before, proper smoothing is 
guaranteed by (y,z)-plane relaxation combined with standard coarsening. However, 
if (y, z )-plane relaxation is performed by multigrid, one has to observe that there 
is an anisotropy in each plane which implies that one should use z-line relaxation 
for smoothing inside the plane-multigrid method. For the same reason, it can easily 
be seen that (y,z)-semi coarsening is possible but has to be combined with z-line 
relaxation rather than point relaxation. 

In Table 3, we summarize appropriate strategies to solve (7) for some extreme 
constant coefficient cases. As before, these results are of direct significance for general 
variable coefficient problems. Again, the two-grid convergence factors shown, will also 
be obtained by complete multigrid cycles. We want to explicitly point out, however, 
that in order to judge which strategy is really the most efficient, it is not sufficient 
to merely look at convergence (see, e.g., the very last method in the table, wh~ch 
converges extremely fast), but one has to take the numerical work per cycle into 
account. We are not going to discuss this any further here. 

Summarizing, we see that the development of a 3D-multigrid algorithm needs a 
careful investigation of the problem at hand. A smoothing process which, in con
nection with standard coarsening, certainly takes care of all possible anisotropies in 
variable coefficient cases is alternating plane relaxation. If, however, one allows for 
some restriction on the size of the coefficients (e.g., that one particular coefficient is 
always the smallest one) one should seriously consider using semi-coarsening, this way 
avoiding plane-relaxation. 

We will come back to the anisotropic 3D case in some detail in Section 5.3. 

problem: a Uzz + b Uyy + c Uzz == f( x, y, z) 

a b c relaxation coarsening v Pv 

1 1 1 point standard 210.198 
1 1 100 z-line standard 2 0.074 

point z-sem1 2 0.017 
1 100 100 (y, z )-plane standard 2 0.052 

point (y, z )-semi 2 0.074 
1 100 10000 (y, z )-plane standard 2 0.052 

z-line (y, z )-semi 2 0.052 

point z-sem1 2 0.009 

Table 3: Results obtained by Fourier analysis 

4.2 First Order Differential Terms 

Additional first order derivatives in ( 4) do not introduce any new problem if their 
coefficients are "small enough". That is, using symmetric differences, the discrete 
equations can be solved efficiently with the same techniques as explained in the pre-
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vious two sections. In particular, the choice of a proper relaxation technique for 
smoothing has to be oriented only to the principle part of the differential equation. 

However, the situation changes if such lower order terms become dominant on a 
grid with meshsize h. As an example, consider the linear convection-diffusion equation 

e: .6.u + aux + buy= f(x,y). 

As long as e: ~ ~ max(!ai, lbl), central differencing leads to diagonally dominant dif
ference schemes~- a property, which assures numerical stability. If this condition is 
(considerably) violated, the difference scheme becomes unstable: The discrete solution 
may become highly oscillating and will have nothing to do with the differential solu
tion. The most common remedy for numerical instabilities is the use of either some 
kind of artificial viscosity (i.e., enlarging c depending on h) or one-sided (upstream) 
differencing for the first order derivatives. 

In the n1ultigrid context, however, it is not enough to have a stable difference 
scheme for the fine-grid mesh size h only, because on coarser grids with much larger 
mesh sizes the same scheme (e.g., central differencing) may still become unstable even 
for first order terms of moderate size. Even if this happens on only a few of the grids 
used in the multigrid cycle, the overall multigrid convergence may be totally spoiled. 
The multigrid iteration may even diverge. 

Note that the straightforward recursive definition of a fixed multigrid cycle, in 
particular, the V-cycle, requires implicitly that all "intermediate" two-grid methods 
exhibit similar convergence properties. In particular, the smoothing effects of the re
laxation should be similar on all grids. In terms of error components, a loss of numer
ical stability on any grid would mean that there are some high frequency components 
showing no or at least only small residuals. Relaxations which usually compute the 
error changes only in dependence upon the (local) residuals, will not affect these high 
frequency components essentially and, consequently, they will loose their smoothing 
properties. Thus, in designing a multigrid algorithm, one has to assure that all the 
difference operators used on the various grids are actually stable discretizations (may 
be of lower order) of the same differential operator. 

The problem of deciding whether a given difference scheme for complex problems 
is sufficiently stable, generally needs some quantitative insight into what stability re
ally means. Such a quantification of stability is given by the so-called h-ellipticity 
measures introduced by A. Brandt (in terms of Fourier components). These are easy
to-compute measures for the stability of difference schemes for a fixed meshsize h 
and actually quite useful in developing and analyzing discretizations even for com
plex problems. In this framework, also the strong interdependency of stability and 
smoothing already mentioned above can be stated more precisely. Brandt points out, 
that discrete ellipticity (i.e. h-ellipticity measures sufficiently bounded away from 
zero) is, generally, a necessary and sufficient condition for the existence of smoothing 
relaxations. The interested reader is referred to [6]. 
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5 Standard Parallel Multigrid 

5.1 Some General Ren1arks 

In this chapter we will consider the parallelization of standard M G methods. On each 
grid level we perform each of the basic grid operations (the MG components: relax
ation, computation of defects, interpolation, and restriction) using as much parallelism 
as possible. It has long been known that certain relaxation methods are parallel in a 
natural way, namely 

- Jacobi-type relaxations 
and 
- Gauss-Seidel-type relaxations with multi-color (red-black, four color etc.) order

ing of the grid points. 
Clearly, computation of defects, interpolation and restriction can be also performed 

in parallel. 
The first systematical papers on parallel MG were those of Grosch [20, 21] and 

Brandt [7]. In [7] most of the essential phenomena with parallel M G are already 
discussed or at least mentioned. In particular, it is stated that the time complexity 
T*(N) 1 of a suitable standard parallel full multigrid (FMG) solver for the 2D-Poisson 
model equation is T*(N) = 0 (log2N) 2

, where N = number of grid points. 
We will consider three cases: Poisson's equation, Stokes equations and the aniso

tropic 3D operator. Each of these cases represents an essentially larger class of equa
tions (Poisson-like, Stokes-like, etc.) to which the considerations of this chapter carry 
over immediately. Parallelization is obvious and straightforward for the Poisson and 
Stokes cases (Section 5.2). Parallel smoothing for the anisotropic case (Section 5.3) 
has to be adapted to the problem parameters as in the sequential case (Section 4.1). 
Common grid transfer operators such as bilinear {in 2D) or trilinear (in 3D) interpo
lation, full weighting, half weighting, and injection are parallel by nature. Thus our 
n1ain en1phasis in this chapter will be the parallelization of smoothing schemes. 

5.2 Isotropic Equations and Systems 

1. We consider a parallel MG-solver for the 3D-Poisson equation on the unit cube 
(0, 1 )3 with periodic boundary conditions. A V-cycle of this algorithm is char
acterized by the following components. 

Discrete operator: ordinary second order 7-point approximation Llh on a reg
ular cubic grid with meshsize h and N = h-3 unknowns. 

Relaxation: 3D-red-black pointwise, all red (black) grid points are si
multaneoulsy treated in the· first (second) relaxation half 
step; v1 = 1 = v2 relaxation steps. 

Coarsening: standard coarsening: h --+ 2h 
ordinary 7 -point operator ~2h on the coarse grid. 

1The time complexity T"' (N) measures the sequential ( = non-parallel) arithmetic overhead of 
an algorithm. It may be defined as the number of parallel arithmetic operations which have to be 
executed sequentially, i.e. one after the other. 
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Grid transfers: 

Cycle type: 

h ~ 2h: 3D full-weighting; 
2h ~ h: trilinear interpolation. 
V-cycle, correction scheme 

The time complexity for a V-cycle of this algorithm is T*( N) = O(log2N). 

2. As a simple example of a system of elliptic equations, we consider the 2D-Stokes 
equations 

2 8p 
-Vu+-

8x 
2 8p 

-\7 v+-
8y 

8u 8v 
-+-
8x 8y 

= 

defined on n = (0, 1)2 with boundary conditions 

u 

v 

on an. In order to guarantee a unique solution the usual compatibility condition 
is additionally required. 

The Stokes equations are discretized in the usual way on a staggered quadratic 
grid (meshsize h): p is defined at cell centers, whereas u and v are defined at 
the centers of the cell faces. 

A V-cycle of a parallel MG-solver for this discrete problem is characterized by 
the following components: 

Relaxation: 

Coarsening: 

Grid transfers: 

Cycle type: 

One relaxation step consists of two parts: Firstly, the mo
mentum equations are relaxed for u and v simultaneously 
using fixed values of p. Then a so-called distributive relax
ation sweep [6] is performed which updates the unknowns 
u, v and pin order to fulfill the continuity equation. Both 
parts of the relaxation are performed using a red-black or
dering. Altogether, v1 = 1, v2 = 2 of these relaxation steps 
are carried out on each level. 
standard coarsening h __,. 2h on staggered grids (the 
coarse grid is not a subset of the fine grid); 
ordinary 7-point operator 6. 2h used on coarse grid. 
h ~ 2h: 2D half-weighting on staggered grids 
2h ~ h: bilinear interpolation 
V-cycle, correction scheme 

The time complexity of this algorithm (V-cycle) is also T*(N) = O(log2N). 

In the two algorithms above only pointwise relaxation is needed for smoothing, since 
the corresponding equations are isotropic. For the anisotropic case in the following 
section, we would need parallel versions of line and plane-relaxations. This means 
that things become somewhat more complicated. 
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5.3 Parallel Multigrid for Anisotropic Operators 
In this section (abstracted from (53]) we describe parallel MG algorithms for the 
anisotropic 3D model operator 

Lu = aUzz + buyy + CUzz (8) 

of Section 4.1. 
This operator can be regarded as representative of a large class of elliptic 3D 

problems. With respect to its anisotropy, it reflects certain general phenomena and 
typical 3D difficulties. On the other hand, the operator is simple enough to allow 
systematic investigations. 

We consider only standard MG algorithms which have proven to be highly efficient 
for sequential treatment. We show that these algorithms are also highly parallel in a 
natural way. This is clear for the isotropic case 

O<a=b=c 

which has been c<?nsidered in Section 5.2. The red-black relaxation is known to give 
very good smoothing and to be highly parallel. On the other hand, as long as standard 
coarsening is maintained, in the cases 

0 < a, b <t: c (a, b same magnitude) 
and 

' 0 <a~ b,c (b, c arbitrary), 

the need for line-relaxation and plane-relaxation respectively for good smoothing, was 
mentioned in Section 4.2. (We consider here only standard coarsening; see, however, 
the remark at the end of this section.) 

We consider the elliptic equation 

with periodic boundary conditions 

in the unit cube 0 = (0, 1 )3
, where Lis the model operator (8) with constant coeffi

cients a, b, c > 0. We assume that the problem is discretized on an fl-matching grid 
nh of mesh size 

h=l. 
n ( n = 21

; l = 0, 1, 2, ... ) 

by use of the ordinary 7-point approximation Lh of order h 2
• 

In the sequel, we describe parallel MG algorithms for this discrete problem. For 
this purpose, it is useful to distinguish the four cases 

(3D-I): 
(3D-2) : 
(3D-3) : 
(3D-4) : 

a 1"..1 b c 
a 1"..1 b <t: c 
a <t: br-v c 
a ~ b ~ c 

In addition to the 3D case, we also consider the corresponding 2D operator auzz + 
buyy 
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(2D-1): 
(2D-2) : 

a ........., b 
a ~ b 

as well as the 1D case (operator au:r::n discretized by second order central differences). 
In particular, the 2D cases and the 1D case occur in an auxiliary way in connection 
with the 3D algorithms described below (parallel solution of 2D and 1D problems in 
the plane- and line-relaxation, respectively). 

Using the terminology of [50], we describe for each of the cases one step of a parallel 
standard l\1G iteration, listing the corresponding 1\IIG components. 

( 1 D): The corresponding tridiagonal linear system is solved by 1D-cyclic reduc
tion. This is a well-known parallel linear solver. (It can ~e regarded as a 
parallel 1D-MG method, namely a V-cycle degenerating to a direct linear 
solver. Its components are v1 = 0, v2 = 1 relaxation steps, only fine grid 
points not belonging to the coarse grid are treated in the relaxation step, 
standard coarsening h :------+ 2h, L 2h is the ordinary 3-point operator, 1D full 
weighting, interpolation only to those fine grid points which belong also to 
the coarse grid.) 

( 2D-1) 2D-Poisson-like equation: 

Relaxation: 2D-red-black pointwise; 
v1 = 1, v2 = 0 relaxation steps; 
all red (black) grid points are simultaneously 
treated in the first (second) relaxation half step. 

Coarsening: standard coarsening h ---+ 2h; 
L2h is the ordinary 5-point operator. 

Grid-transfers: h ---+ 2h: 2D full weighting; 
2h ---+ h: bilinear interpolation; 
all grid transfer operations are sirnultaneously per
formed for the respective grid points. 

Cycle-type: V-cycle (or F,W-cycle); 
correction scheme. 

(2D-2) 2D-anisotropic equation: 

Relaxation: y-linewise in a red-black-zebra order of lines; 
v1 = 1, v2 = 0 rela.xation steps; 
all red (black) zebra lines are simultaneously 
treated in the first (second) relaxation half step; 
for each line, the parallel1D-cyclic reduction algo
rithm is applied. 

All other components are chosen as in the (2D-1) case. 

(3D-I) 3D-Poisson-like equation: 

Relaxation: 3D-red-black pointwise; 
v1 = 1, v2 = 1 relaxation steps; 
all red (black) grid points are simultaneously 
treated in the first (second) relaxation half step. 
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Coarsening: standard coarsening h ----+ 2h; 
L2h is the ordinary 7 -point operator. 

Grid-transfers: h ----+ 2h: 3D full weighting; 
2h --+ h: trilinear interpolation; 
all grid transfer operations are simultaneously per
formed for the respective grid points. 

Cycle-type: V-cycle (or F,W-cycle); 
correction scheme. 

(3D-2) 3D anisotropic equation, one dominant direction: 

Relaxation: z-linewise in a 2D-red-black order of lines; 
v1 = v2 = 1 relaxation steps; 
all red (black) lines are simultaneously treated in 
the first (second) relaxation half step; 
for each line, the parallel1D-cyclic reduction algo
rithm is applied. 

All other components are chosen as in the (3D-1) case. 

(3D-3) 3D anisotropic equation, two dominant directions: 
Relaxation: (y,z )-plane relaxation in a red-black-zebra order of 

planes; 
v1 = v2 = 1 relaxation steps; 
all red (black) planes are treated simultaneously in 
the first (second) relaxation half step; 
for each plane, one V-cycle of the parallel (2D-1)
MG algorithm is applied. 

All other components are chosen as in the ( 3D-1) case. 

(3D-4) 3D anisotropic equation, each coefficient of different size: 
Relaxation: (y,z )-plane relaxation in a red-black-zebra order of 

planes; 
v1 = v 2 = 1 relaxation steps; 
all red (black) planes are treated simultaneously in 
the first (second) relaxation half step; 
for each plane, one V-cycle of the parallel (2D-2)
MG-algorithm (with z-line relaxation!) is applied. 

All other components are chosen as in the (3D-1 )-case. 

Result 5.1 Table 4 contains the time complexity T(N) for one (V-, F-, W-) cycle of 
each of the algorithms described above. 

As a simplifying measure of the time complexity, we use "dimensional-weighted 
stencil units". This means that we count: 

3 for the parallel application of a 3D stencil to a 3D grid function (or for the 
parallel calculation of a 3D defect); 
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2 for the parallel application of a 2D stencil to a 2D grid function (or for the 
parallel calculation of a 2D defect); 

1 for the parallel application of a 1D stencil to a 1D grid function. 

V-Cycle F-Cycle W-Cycle p* 

(3D-1) l5l +3 ~l2 + 21[ +3 
2 2 18n -15 0.2 

(3D-2) 2[2 + l9l +3 ~[3 + 
3 21 [2 + nz +3 

2 6 O(n) 0.07 

(3D-3) 12J2 + 351 +3 4[3 + 47l2 + 45[ +3 
2 2 O(n) 0.05 

(3D-4) i[3 
3 +18P + 119l 

3 +3 l[4 
3 + 230 [3 + :. ~5l2 + 1!51 +3 O(n) 0.05 

{2D-1) 6l +2 3l2 + 51 +2 8n- 6 0.25 

(2D-2) P+ 8l +2 l[3 + 
3 

~l2 + 37l +2 
2 6 O(n) 0.125 

{1D-1) 2l +1 - - 0. 

Table 4: Time complexity T(N) and convergence factors p* 

Here we have used the notations 

N = nd = 2dl (d == dimension of the problem, l == number of levels, 
n == number of grid intervals in each coordinate direction.) 

p* = supp(Mlh) (cf.[50]). 

From Table 4 we recognize that the time complexity T(N) is polynomial in l == 
O(log N) for V- and F-cycles (and linear inn for W-cycles). The polynomial degree 
depends on the anisotropy of the operator considered. This is due to the fact that we 
use auxiliarily 2D-MG cycles or lD-cyclic reductions (with time complexity of order 
2: O(log N)) in the plane- and the line-relaxations, respectively. In the sequential case, 
such auxiliary lower dimensional MG cycles do not change the asymptotic optimality 
of the 3D-MG algorithms. 

In Section 4.2 we have mentioned also certain semi-coarsening strategies in con
nection with point relaxation for the cases (3D-2), (3D-3), (3D-4), and which lead to 
efficient 3D-MG methods. The grid structure of these algorithms is somewhat more 
complicated than the grid structure of standard coarsening algorithms. However, one 
can avoid the increase of the degree of l in T( N) by using semi-coarsening strategies. 

On the other hand, with respect to the practical implementation of parallel 3D
MG algorithms on real MIMD systems, the polynomial increase of T(N) in log N does 
not seem to be significant (see also Section 6.2). 

Finally, we remark that the time complexity measures of all parallel algorithms 
above have to be multiplied by a factor of O(log N) if we consider full multigrid 
versions instead of single cycles. 
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6 Grid Partitioning, General Grid Structures, 
Implementation Aspects 

6.1 Grid Partitioning for Regular Grids 

In the previous chapter, we have considered standard highly parallel MG algorithms 
implemented on hypothetical systems which have as many processors as desired. How
ever, when they are implemented on real vector or parallel computers, it is not usually 
possible to fully exploit their inherent parallelism. 

For example the pipelined processors in vector computers allow only a low degree 
of parallelism to be achieved. Even highly parallel multiprocessor computers always 
have a certain limited number of simultaneously working processing elements (say 
P). Nevertheless, the high degree of parallelism in the algorithms is useful or even 
necessary for several reasons. Firstly, it is preferable to construct algorithms which can 
be used on any parallel machine independently of P. Secondly, the full performance 
of vector units can usually be achieved only by using long vectors, and so require 
an algorithm with a high degree of parallelism. Finally, the recently designed high 
performance MIMD multiprocessors (such as SUPRENUM) combine the - global -
MIMD structure with - local - SIMD pipeline processing (e.g. by vector floating 
point units) in each node. For such MIMD /SIMD systems, the MIMD and the SIMD 
degrees of parallelism are effectively multiplied provided that both are supported by 
the implemented algorithm. 

We would like to emphasize that the communication problem in MIMD multipro
cessors with distributed memory has essential algorithmical implications. Since for 
such systems one has to make a decision about the interconnection structure of the 
nodes, this structure defines a "neighborhood" and by that, a topology of the nodes 
in a natural way. In the design of the algorithms this topology has to be taken into 
account. In addition to the parallelism that has to be provided by the algorithms, 
a second important property, "locality" of the algorithms with respect to the given 
topology, is required. This means that the amount of data which has to be commu
nicated, the number of communication packages, and the distances which have to be 
spanned in the architecture become of essential significance. 

If grid applications are to be implemented on MIMD multiprocessor computers, a 
straightforward approach is to use grid partitioning. For all methods, whether single 
grid or M G, this means that the original domain is split into P parts (sub domains) in 
such a way that, with respect to the finest grid, each subdomain consists of (roughly) 
the same number of grid points (see Figure 4). Each subdomain is then assigned to 
one of the P processes of the parallel program. The partitioning generates certain 
artificial boundaries within the original domain. 

If we consider a typical component of a parallel grid algorithm, e.g. a parallel 
relaxation step, we see that on each subdomain this relaxation step can be carried 
out independently, provided all necessary data are available. Because there are only 
local interdependencies of the grid points, each process needs foreign data only fron1 
boundary areas of neighboring subdomains. After the step is perforn1ed, again data 
have to be communicated (exchanged) across the artificial boundaries (see Figure 5). 

The extension of the single grid case to parallel MG is obvious: On the finest grid 
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Figure 4: 2D-grid partitioned into 16 logically rectangular subdomains. 

level, all communication is strictly local. Similarly, on the coarser grids necessary 
communication is "local" relatively to the corresponding grid level (i.e. neighborhood 
is defined with respect to the grid level). 

One should distinguish the grid partitioning approach as sketched above from the 
domain decomposition or substructuring methods which are often considered in con
nection with finite element or finite difference discretizations on parallel computers. 
The decomposition and substructuring methods lead to algorithms which are numer
ically different from the undecomposed or sequential version. In contrast to that, 
parallel algorithms based on grid partitioning are algorithmically equivalent to their 
non-partitioned versions (running on sequential computers) in many cases. 
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6.2 Grid Partitioning for the Anisotropic 3D Operator 
As a very simple example of the grid partitioning approach, we consider here a prob
lem in the unit cube, namely the anisotropic 3D problem as discussed in Section 5.3. 
Since the corresponding algorithms may become quite complicated (with the recur
sive structure of plane and line-relaxation), we confine ourselves to the discussion of 
algorithmic aspects which arise when these algorithms are implemented on MIMD 
computers. The communication aspects are not explicitly discussed here as we are 
mainly interested in results which are hardware independent and optimal in the sense 
that communication overhead is neglected. (This material is abstracted from [53].) 

The communication overhead has been investigated very systematically in many 
papers of Mierendorff and Kolp (for simpler MG test algorithms). They have consid
ered all standard topologies (such as arrays, trees, hypercubes, etc.), but also more 
sophisticated ones like the SUPRENUM topology (see for exainple [30]). A somewhat 
simplified SUPRENUM-like topology will be studied in chapter 7. 

Clearly, there are many reasonable ways to partition the given grid (domain) into 
subgrids (sub domains) and to map them onto the multiprocessor architecture. 

For simplicity, we consider here only the most straightforward partitioning and 
mapping. 

We first assume that there are P = pd = 2dq parallel working processor nodes 
available in the architecture ( d: dimension of the problem). We consider the discrete 
3D problem described in section 5.3 with N = nd = 2dl grid points (n: number of 
grid points in each coordinate direction). Each of the 3 coordinates of the unit cube 
is now divided into 2q equidistant intervals so that n consists of 2dq subcubes nijk 
( i,j, k = 1, ... , 2q). 

Distinguishing the cases (3D-1), (3D-2), (3D-3), (3D-4), we then apply the respec
tive 3D-MG algorithms. Using grid partitioning, these algorithms are decomposed 
and applied to the sub grids in a natural way. Communication (exchange of data) is 
required only along the "interior" boundaries of the subcubes niik· The degree of par
allelism of these decomposed algorithms is determined by P, the number of processing 
nodes. We assume that the problem size is essentially larger than the "system size", 
i.e. that N > P. 

Result 6.1 Under the above assumptions, the time complexity T(1V, P) for the de
composed 3D-MG algorithms (3D-1}, (3D-2}, {3D-3}, (3D-4) is given by Table 5. 
Additional results refer to the corresponding 2D-cases. 

The T(N, P) expressions are valid for arbitrary Nand Pas long as l > q. However, 
in practice one will usually regard P as fixed and N as variable ( N ---t oo ). 

The leading terms which have the form const * N/ P clearly coincide for P = 1 
with the leading terms of the complexity for the corresponding sequential algorithms. 

We have not explicitly specified the minor terms 0( ... ) here since they are very 
lengthy. In order to give an impression of the size of the above expressions and, in 
particular, of the relation between leading and minor terms, we consider a concrete 
example in Table 6. 
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V-Cycle F-Cycle W-Cycle 

(3D-1) 60!:!.. + 105q-39 
7 p 7 ~90 ~ + 0( q2' lq) 10~ + 18n- 25!!. p p 

(3D-2) 776 '¥ + 0( q2' q;:) 6084~ + O(q3 q2l qn2) 
49 p ' ' p2 

38 ~ + 0( n q n2 ) 
3 p ' p2 

(3D-3) 1~4 '¥ + 0( q2' q;) 9:92 ~ + 0( q3' q2l, qr;) 62~+ O(n q2!!. ql!!.) 
3 P ' P' P 

(3D-4) 436N + O(q3 qn~ q2!!.) 
21 p ' PM ' p 

3488!:!_ + O(q4 q3l q2!!. qn2) 
147 p ' ' p' p2 

218 ~ + O(n q3!!. q2f!!. qn2) 
9 P ' ' P' P' P 

(2D-1) 4'f; + 6q- 2 136 r; + 0( q2' ql) 6~ + 8n- 12!! p p 

(2D-2) 136!} + O(q2,q;) 694 r; + 0 ( q3' q2l' q;) 8~ + O(n ql!l q2!!.) 
p ' P' p 

Table 5: Time complexity T( N, P), neglecting communication overhead 

Here, we compare the exact T(N, P) values (bold numbers) with T(N, 1)/ P where 
T(N, 1) gives the sequential time complexity. The ratios 

E(N P)- T(N,1)/P - T(N,1) 
' - T(N,P) - P*T(N,P) 

are the efficiency values of the decomposed algorithms (neglecting communication!). 
See also section 7 .1. 

V-Cycle F-Cycle W-Cycle 

T(N,P) T(N,1)/P E(N,P) T(N,P) T(N,1)/P E(N,P) T(N,P) T(N,1)/P E(N,P) 

. (3D-1) 

(3D-2) 

(3D-3) 

(3D-4) 

(2D-1) 

(2D-2) 

35148 35108 .999 40374 40123 
49298 44556 .904 57506 50937 
73716 72555 .984 85750 82919 

95800 85206 .889 113086 97406 

16406 16383 .999 22042 21845 

23024 21853 .949 31668 29143 

Table 6: Evaluated time complexities T(N ,P) for 
P == 512 N == 221 ~ 2 million 
P == 256 N == 220 ~ 1 million 

.994 42864 

.886 61392 

.967 93552 

.861 124208 

.991 32000 

.920 47808 

in the (3D) case 
in the (2D) case 

40958 

52007 

84639 

99444 

24560 

32784 

From the values in Table 6 we recognize that the efficiency is high or at least 
satisfactory in all cases. The influence of the very coarse grids is not an essential 
problem, even in the cases ofF- and W-cycles. This is true even though we have used 
a very simple and general partitioning rather than partitionings that are optimized 
for the specific cases. Nevertheless, there are many interesting observations that can 
be made in connection with Table 5 and Table 6. We will conclude with one such 
observation. 

We recognize that in those V-cycle cases where line-relaxation is used the efficiency 
of the respective 3D-algorithms is essentially worse than in the cases of point- or "pure" 
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.965 

.847 

.905 

.801 

.768 

.686 



plane-relaxation. The reason for this is the influence of the very coarse grids and the 
partitioning we have used. Compare, for example, the cases (3D-2) and (3D-3). For 
(3D-2), in each relaxation step n 2 lD-problems have to be solved and therefore O(n2

) 

"very coarse grid visits" have to be made. On the other hand, in each plane-relaxation 
step in (3D-3), "only" n 2D-problems are treated and therefore O(n) very coarse grid 
visits are necessary. 

6.3 More General Grid Structures 

Although the typical applications in scientific supercomputing belong to a wide range 
of different scientific and technological fields, many of them are characterized by re
markably similar mathematical models and, as a consequence of that, by very similar 
data structures. Grids and grid-like data str~ctures are encountered most frequently. 
(The material here is abstracted from: [49].) 

Apart from the very simple grid structures considered so far, there· are several 
more involved structures encountered in various applications. We here distinguish 
three types of grids: 

• Regular grids 
Regular grids normally arise from discretization of PDEs on simple domains, 
i.e. domains which can be mapped to rectangles and cuboids by special trans
formations. 

Regular grids are characterized by direct grid point addressing and a rectangular 
(2D) resp. cuboid (3D) address space area. A geometric neighborhood of grid 
points in this respect also means a logical neighborhood in the address space of 
the data structure. 

• Block structured grids 
In many applications, in particular in CFD, it is either not practiced or not ap
propriate to transform the domain to only one rectangle (cuboid). The domain 
must rather be partitioned into several parts ("blocks") each of which in turn 
can be transformed to a rectangle or cuboid (see Figure 4 for such a transfor
mation and Figure 6( c) for a simple grid consisting of 2 blocks). This mapping 
technique results in block structured grids, \vhich consist of several regular grids. 
The relations within each block are of the same type as in the case of regular 
grids. It can become difficult to maintain the locality at the block boundaries if 
the block structure itself is not a regular one. A concept seems to be accepted for 
CFD simulations where each single block shows a regular internal grid structure, 
but the block structure itself is admitted to be irregular [36, 37]. 

• Irregular grids 
If there is no fixed grid structure, we speak of irregular grids (no fixed number of 
neighbor points, no regularity of subgrids ). The grid points cannot be addressed 
geometrically but must be addressed indirectly (using pointers). The typical 
example for irregular grids in this respect are certain finite element nets (see 
Figure 6( a)). Local relations, which are natural also on irregular grids, can no 
longer be identified as local relations in the memory. 
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Figure 6: Irregular (a), locally refined (b), and block-structured (c) grid 

In this paper, we will only consider grids the structure of which is statically defined, 
i.e. the grid structure is already known a priori and will not be changed in the course 
of the calculation. For such static grids the grid partitioning approach is very natural. 

6.4 Implementation of Parallel Grid Algorithms 

The general parallelization approach for grid applications on distributed memory
multiprocessor ( dm-mp) architectures is the grid partitioning method as introduced 
above. With respect to regular grids, we summarize its characteristics here once more: 

• A set of equal size subgrids is created and each subgrid is itself regular. 

• All subgrids are processed independently and in parallel during each MG step. 

• The numerical algorithm is not changed, i.e. its sequential and its parallel 
version give exactly the same results. 

• After each computational step the boundaries of the subgrids have to be updated 
using communication. 

We now formulate some basic guidelines which should be considered if the grid 
partitioning method (as well as any other parallelization method) is implemented on 
a dm-mp system. (The material here is in part abstracted from [47].) 

1. The implementation should be independent of the topology of the architecture. 
The structure of a parallel grid program should look identical on hypercubes, 
trees, or hierarchical architectures like SUPRENUM. 

2. The implementation should also be independent of the number of processors. It 
should be possible to run the same program on different numbers of nodes with
out recompilation- at least as long as the local memory capacity is sufficient. 

3. For reasons of debugging, maintenance, and program aesthetics, a clear program 
structure is highly recommended, separating the calculation and the communi
cation parts of the code. 

4. Finally, the programmer should strive for portability within the class of dm-mp 
systems. This requires, however, common (language or run-time) constructs 
describing the parallelism and the communication. 
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Guideline 1 is satisfied if each subgrid is associated with a process (as described in 
Section 2.3) instead of directly with a node. The system of processes has a user defined 
topology. For the grid partitioning method a grid or torus is obviously an appropriate 
process topology since it preserves locality, i.e. neighboring subgrids are associated 
with neighboring processes. During global collection and distribution steps it may 
be useful to configurate the processes additionally as a binary or as a spanning tree. 
The mapping of the process structure to the actual hardware configuration should be 
done automatically by the system software. Process grids are mapped to hypercubes 
using gray-codes. On SUPRENUM a special mapping library performs optimized 
process-node mappings for a number of standard process topologies including grids 
and trees. 

Typically, a parallel program for a regular grid application (single grid or multigrid) 
on a dm-multiprocessor has the following structure: 

• The host process creates the set of processes and sends them the necessary 
control data (identification of their "neighbors", index range of the subdomain, 
certain global parameters of the algorithm). 

• The host process sends each process the initial data belonging to its part of the 
domain. 

• The node processes receive the initial information. 

• The computation part in the node processes is separated from the communica
tion part and is very similar to a sequential grid program. 

• After each computational step the points near the interior boundaries (which 
are stored in overlap areas) are updated by mutual exchange of data. 

• During the computation certain globally dependent results (such as norms of 
residuals) are assembled treewise. 

• After the computation, the results are sent to the host process, where the solu
tion for the entire domain is assembled, or are written directly to an external 
file system. 

Nearly all existing dm-mp systems (Intel iPSC, SUPRENUM etc.) provide a more or 
less convenient process model. The grid partitioning method for regular grids requires 
only the static features of the process model, i.e. all processes are created and started 
at the beginning of the application. Programming of adaptive (i.e. solution dependent) 
grid structures may require, however, dynamic processes which can be created during 
run-time. Dynamic process concepts are provided by some of the existing dm-mp 
machines although the fundamental mapping problems are not solved yet. Some 
work on the mapping problems has been done in the SUPRENUM project [31]. 

Guideline 2 requires that several processes can run on one node at the same time 
(multi-processing). Although - due to the process switches - the performance will 
decrease, this option is necessary in order to provide independence from the actual 
underlying hardware configuration. In the future, dm-mp systems will not be single
user systems. They will be large supercomputers with the flexibility to allow the 
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user to have the whole machine (for production runs) or only a small part of it (for 
development and debug purposes). 

Multi-processing is not crucial for regular grids since the user can very easily adapt 
the number of processes to the number of nodes actually available. In fact, this is 
much more efficient than having a fixed large number of subgrids and processes and 
relying on multi-processing. Advanced fault tolerance concepts, however, need the 
multi-processing feature since they allow the continuation of an application even if a 
total failure occurs on a node. 

Message-passing is the basic communication system on dm-mp architectures. The 
most convenient - but unfortunately also most expensive- communication protocol is 
asynchronous message-passing. This means that the sending process sends its message 
into the mailbox of the receiver and immediately continues execution without waiting 
for completion of the message transfer. The receiving process looks for a message in 
its mailbox and eventually waits until the desired message arrives. The asynchronous 
message passing allows an arbitrary sequence of SEND and RECEIVE statements 
and leads to a clear program structure (guideline 3). 

A simpler protocol is synchronous message passing where the sender has to wait 
until the destination process has received the message. This requires a special struc
ture of SEND and RECEIVE staten1ents in order to avoid deadlock situations. The 
data exchange programmed in the node program in Section 6.5, for instance, will result 
in a deadlock for synchronous message passing because all processes are sending at 
the same time. (Of course, a simple rearrangement of the SENDs and RECEIVEs will 
remove the deadlock). For grid partitioning on regular grids synchronous message
passing is completely sufficient, whereas block-structured grids can be programmed 
more comfortably using asynchronous message passing. · 

In both concepts, the RECEIVE statement is blocking, i.e. the node program 
execution is stopped until the specified. message has arrived in the mailbox. This 
implicitely solves the synchronization problem since communicating processes syn
chronize themselves. In asynchronous systems it is possible to check the availability 
of pending messages, prior to issueing a RECEIVE. 

Portability (guideline 4) is a very important issue. Parallelism for the most rel
evant programming languages such as Fortran and C is not yet standardized. Some 
of the dm-mp systems provide calls to the run-time library for process creation and 
communication. Data have to be transfered via the procedure interface which re
quires additional copy steps. SUPRENUM has included most of those constructs 
into Fortran. Here, the SEND and RECEIVE constructs are similar to ':VRITE and 
READ and they support the Fortran-8X array notation. Transputer systems mainly 
use the OCCAM language which already contains all necessary process handling and 
communication constructs. 

In view of this variety one approach towards portability is the use of special com
munications libraries which then have to be implemented on all systems. Such libraries 
are clearly restricted to certain classes of applications and data structures. One effort 
in this direction is the SUPRENU:NI communications library for grid applications (see 
Section 6.6). 

There are several other approaches to portability, a very promising one being 
the definition, implen1entation and use of certain system independent communica-
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tion macros. Such macros cover the whole area of process creation, communication, 
synchronization etc. If parallel programs are written in terms of these macros, they 
then run on every parallel machine on which the macros are available. Moreover, the 
macros can be implernented on dm-mp systems as well as on shared memory machines. 
In one s-uch concept [3], macros have been implemented on the following systems: 

• Encore Multimax 

• Sequent Balance 

• Alliant FX/8 

• Network of Sun workstations 

• Intel iPSC /2 hypercube 

• Network of IBM RT workstations 

• SUPRENU~I 

Figure 7 summarizes the different mapping stages which are involved in the map
ping of grid applications to dm-mp systerns. The first step is the user-supplied map
ping from the physical boundary fitted grid to a logical rectangular structure (by 
grid generation programs), followed by mapping of the rectangular grid structure to 
a process system (using the grid partitioning method). The final mapping step maps 
the process system to the nodes. 

boundary fitted 
grid 

grid generation 
(use1 p1og1am) 

rectangular 
grid 

grid partitioning 
( comm. libra1y) 

process sytem 

process mapp1ng 
(mapping lib1ary; 

~~------h_a_r_d_w_a_r_e_n __ o_d_e_s ______ ~ 
Figure 7: Mapping steps 
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6.5 Example of a Parallel Grid Program (SUPRENUM) 

The concrete program example given here consists of a simple host and node program 
for a 2D relaxation (e.g. for the iterative solution of Poisson's equation). The process 
creation and the message passing instructions are taken from SUPRENUM Fortran 
[2]. 

The host program runs on a front-end system which can perforn1 user I/0 whereas 
the node program is loaded into the nodes. For regular grid algorithms usually only 
one node program has to be written which operates on the different subgrids. Thus 
the operation mode is rather SIMD-like than MIMD-like for these applications. More 
complex applications and/ or data structures require different node programs on the 
different nodes. 

The example programs listed below should be regarded as functional kernels but 
not as a complete, safe, and efficient implementation of a grid algorithm. For instance, 
the initial information sent to the node processes usually contains a lot more control 
data (e.g. for the numerical algorithm). The collection of local solutions and local 
residual norms as programmed here is neither safe nor efficient. For reasons of safety, 
for instance, the node processes first should ask the host process whether it is ready 
to accept the solution data. The local residual norms can be collected much more 
efficiently via a process tree. 

Host program: 
C declarations 

REAL, ARRAY (0:10000, 0:10000) :: U,F 
TASKID, ARRAY, ALLOCATABLE(:,:) .. PID 
TASKID SOUTH, NORTH, WEST, EAST 
INTEGER, ARRAY, ALLOCATABLE(:,:,:) .. IX, IY 

C initialize tags 

INTEGER TIN, TST, TSO, TRE 
DATA TIN/10/, TST/11/, TS0/12/, TRE/13/ 

C user input: 
C maximal number of relaxations MAXIT 
C ~recess configuration NPX x NPY, grid size NX x NY 
C 1nitial solut1on U, right hand side F 

READ( ... ) MAXIT, NPX, NPY, NX, NY, U, F 
NP=NPX * NPY 

C allocate dynamic arrays 

ALLOCATE PID(NPX, NPY), IX(NPX, NPY, 2), IY(NPX, NPY, 2) 
C compute size of subdomains 

IPSX=NX/NPX 
IPSY=NY/NPY 
DO 10 IPX = 1, NPX 

DO 10 IPY = 1, NPY 
C create node processes 

PID(IPX,IPY) = NEWTASK( 'PROG..NODE', (IPY-1)*NPX+IPX) 
C store index boundaries of subgrids 

IX(IPX,IPY,1) = (IPX-1) * IPSX + 1 
IX(IPX,IPY ,2) = IPX * IPSX 
IY(IPX,IPY ,1) = (IPY-1) * IPSY + 1 
IY(IPX,IPY ,2) = IPY * IPSY 

10 CONTINUE 
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C send initial information 
DO 20 IPX = 1, NPX 

DO 20 IPY = 1, NPY 
SOUTH = .NOTASKID. 
IF(IPY.NE.1) SOUTH=PID(IPX,IPY-1) 
NORTH = .NOTASKID. 
IF(IPY.NE.NPY) NORTH=PID(IPX,IPY+1) 
WEST = .NOTASKID. 
IF(IPX.NE.1) WEST=PID(IPX-1,IPY) 
EAST = .NOTASKID. 
IF(IPY.NE.NPX) EAST=PID(IPX+1,IPY) 
SEND (TASKID=PID(IPX,IPY), TAG=TIN) 

& MAXIT, IPX, IPY, IX(IPX, IPY, 1:2), IY(IPX, IPY, 1:2), & SOUTH, NORTH, WEST, EAST 
20 CONTINUE 
C send initial solution and right hand side 

DO 30 IPX = 1, NPX 
DO 30 IPY = 1, NPY 

SEND (TASKID=PID(IPX,IPY), TAG=TST) 
& U(IX(IPX,IPY,1):IX(IPX,IPY,2), IY(IPX,IPY,1):IY(IPX,IPY,2)), & F(IX(IPX,IPY,1):IX(IPX,IPY,2), IY(IPX,IPY,1):IY(IPX,IPY,2)) 

30 CONTINUE 
C receive solution in arbitrary order 

DO 40 IP=l,NP 
RECEIVE (TAG=TSO) IPX, IPY, 

& U(IX(IPX,IPY,1):IX(IPX,IPY,2), IY(IPX,IPY,1):IY(IPX,IPY,2)) 40 CONTINUE 
C receive residual norms in arbitrary order 

RES = O.DO 
DO 50 IP=1,NP 

RECEIVE (TAG=TRE) RESLOC 
RES = MAX (RES, RESLOC) 

50 CONTINUE 
C postprocessing 

C end of host program 
DEALLOCATE PID, IX, IY 
STOP 
END 

Node program: 
C declarations 

REAL,ARRAY,ALLOCATABLE(:,:) .. U,F 
TASKID SOUTH, NORTH, WEST, EAST 
INTEGER, ARRAY (2) :: IX, IY 

C tags 
INTEGER TIN, TST, TSO, TRE 
DATA TIN/10/, TST/11/, TS0/12/, TRE/13/ 

C receive initial information 
RECEIVE(TAG=TIN) MAXIT, IPX, IPY, IX, IY, SOUTH, NORTH, WEST, EAST 

C allocate dynamic arrays 
ALLOCATE U(IX(1)-1:IX(2)+1, IY(1)-1:IY(2)+1), F(IX(1):IX(2), IY(1):IY(2)) 

C receive initial solution and right hand side 
RECEIVE(TAG=TST) U(IX(1):IX(2), IY(1):IY(2)), F(IX(1):IX(2), IY(1):IY(2)) 

C iterative loop 
DO 10 IT= 1, MAXIT 

C subroutine RELAX contains the usual sequential program 
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CALL RELAX(U, F, ... ) 

C data exchange by message passing: 
C First send the current approximation at points which 
C belong to the overlap of the western (eastern, southern, 
C northern) neighbor process to this process. 
C Then receive the current approximation at points which 
C belong to the own overlap'. These values have been sent 
C by the western, eastern, southern, and northern 
C neighbors in their SEND statements. 

TEX = 100 + IT 
SEND(TASKID=WEST,TAG=TEX) U(IX(1),IY(1):IY(2)) 
SEND(TASKID=EAST,TAG=TEX) U(IX(2),IY(1):IY(2)) 
SEND(TASKID=SOUTH,TAG=TEX) U(IX(1):IX(2),IY(1)) 
SEND(TASKID=NORTH,TAG=TEX) U(IX(1):IX(2),IY(2)) 
RECEIVE(TASKID=WEST,TAG=TEX) U(IX(1)-1,IY(1):IY(2)) 
RECEIVE(TASKID=EAST,TAG=TEX) U(IX(2)+1,IY(1):IY(2)) 
RECEIVE(TASKID=SOUTH,TAG=TEX) U(IX(1):IX(2),IY(1)-1) 
RECEIVE(TASKID=NORTH,TAG=TEX) U(IX(1):IX(2),IY(2)+1) 

C end of loop 

10 CONTINUE 

C send local solution to host 

SEND (TASKID=MASTER(), TAG=TSO) IPX, IPY, U(IX(1):IX(2), IY(1):IY(2)) 
C send local residual norms to host 

CALL RESID(U, F, RES, ... ) 
SEND (TASKID=MASTER(), TAG=TRE) RES 

C end of node program 

DEALLOCATE U, F 
STOP 
END 

6.6 Communications Libraries 

In the future, parallelizers like SUPERB [55] will generate host and node programs 
such as those given in Section 6.5 (semi )-automatically. Until then the development of 
parallel programs can be simplified by certain library functions which provide typical 
high-level communication patterns in a convenient way for the user. The SUPRENUM 
communications library [25, 27, 28], for instance, contains subroutines for the creation 
of a process system with a grid topology, for the sending of initial information, for the 
boundary exchange, and for the final collection step. It is advantageous to use such a 
library because it ensures 

• clean and error-free programming, 

• easy development of parallel codes, 

• portability within the class of dm-mp systems (see guideline 4 in Section 6.4 ). 
Programs can be ported to any dm-mp machine as soon as the communication 
library has been implemented. As an example, programs are routinely ported 
between the Intel iPSC and SUPRENUM. 

A corresponding library for block-structured applications ( 6.3) is also available. Most 
of the application software which has been written in the SUPRENUM project is 
based on these routines. 
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7 Multiprocessor Efficiency of Multigrid 

7.1 Basic Notations and Measures 

The usual quantities of interest in evaluating the performance of parallel algorithms 
are: 

• Time T( N, P): time to solve a problem of size N on a multiprocessor system 
using P nodes, 

• mp-speed-up S(N, P) := T(N, 1) I T(N, P), 

• mp-efficiency E(N, P) := S(N, P) I P. 

Note that on MIMDISI:NID archi_tectures, such as dm-mp systems with vector nodes, 
the utilization of the hardware resources is the product of the mp-efficiency defined 
above and the efficiency related to the vector processing unit. 

The sequential reference time T(N, 1) refers to the parallel program running on 
one node. T(N, 1) may be a hypothetic time because for large values of N the memory 
of one node might be too small. 

Another very common definition of the speed-up is 

S*(N, P) = T(N, 1, Aopt) 
T(N, P, Apar) 

which assumes that the best sequential algorithm available Aopt is compared to the 
(possibly different) parallel algorithm Apar· S* depends on the efficiency of the parallel 
implementation (nip-efficiency) as well as on the numerical efficiency of the algorithms. 
Both types of efficiency are important but they should be clearly separated. In this 
paper we are solely interested in the mp-efficiency as defined above. \Ve want to 
compare, for example, parallel single grid methods to sequential single grid methods 
and not to the much faster sequential MG methods. 

The basic reasons for mp-efficiency being significantly smaller than 1 are 

• not enough parallelism in the algorithm (i.e. the number of processes which can 
execute in parallel is smaller than the number of nodes available), 

• unbalanced load, 

• communication (including synchronization 2 ). 

The mp-efficiency can be expressed as 

1 
E(N,P)=-. 

1+r 

The quantity r is a measure for the "parallel overhead". It is used here because it 
allows a clear separation of the different overhead sources (see Section 7 .2). The aim 
of an implementation of parallel algorithms is, of course, the minimization of the total 
overhead (not necessarily of each of its components). In order to quantify this goal, 
we formulate the following conditions: 

2Synchronization will be neglected in this chapter. 
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(A) E -+ 1 for N -+ oo and P fixed. For sufficiently large problems on a given 
machine the efficiency should be close to 1. This condition gives no information 
about the efficiency for realistic values of N or about the asymptotic behaviour 
as NIP-+ oo. 

(B) E ---+ 1 for Nl P ---+ oo. This is a stronger condition than (A) requu
ing that the efficiency depends only on the process size s == NIP. Condi
tion (B) ensures the scalability of the parallel application which means that 
T( N, P) == T(2N, 2P), i.e. a twice as large problem can be solved in the same 
time using twice as many nodes. This is important if the parallel algorithm runs 
on massively parallel dm-mp systems with thousands of nodes. 

(C) E ~ 0.5 for "realistic" process sizes s == NIP. For certain applications N is 
given and condition (C) should determine a reasonable value for P. We can also 
derive from this condition the minimum size of the node memory. If condition 
(B) is fulfilled we can define s 1; 2 as the process size for which E==0.5. (This 
definition is independent of the size of the machine.) 

7.2 A System Model for a Ho1nogeneous Architecture 
In the rest of the paper we always assume that each node of the dm-mp system 
is associated to exactly one process, i.e. we do not distinguish between nodes and 
processes. As mentioned in Section 6.4 this assumption is reasonable for regular 
grids. 

The basic parameters which describe the performance of a homogeneous dm-mp 
system are · 

P number of processes (==nodes). The number of processes in each direction 
of the process grid is assumed to be a power of 2 

a: the start-up time for sending and receiving a message 

f3 the transfer time per word of a message 

8 the time for one floating point operation. 

The start-up and transfer times are often given in nondimensionalized form a.' == 
a: I 8, {3' == f3 I 8. a:' is the number of flops that can be performed during one message 
start-up, {3' is number of flops during the transfer of one word. For our simulation, 
8 is assumed to be constant. On vector nodes it depends, of course, heavily on the 
vector length. 

The total time for a parallel program which is based on message-passing consists 
of a calculation component Tcomp and a communication component Tcomm· 

Communicating a message of length L items costs a.' + (3' L time units (==flops). 
So Tcomm is a combination of the start-up time T~t (depending on a.') and the transfer 
time Ttr (depending on f3'). Ttr is an expression for the lumped transfer times turning 
up in different system components. 

For existing dm-mp systems with vector nodes (SUPRENUM, iPSC-VX, iPSC 1860) 
the communication parameters a:' and j3' lie in the range of 1000-10000 and 10-100, 
respectively. For dm-mp systems with less powerful scalar arithmetic co-processors 
these values are much smaller. 
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If calculation and communication cannot be overlapped at all, the total time is 

(9) 

On many dm-mp systems special communication hardware is available and the trans
fer of the data to the communication channel or bus may be done in parallel to the 
computational work. If perfect overlap of communication and calculation can be 
achieved the total time reduces to 

(10) 

We expect the real time to lie somewhere between the worst case (9) and best case 
(10) estimates- depending on the actual hardware and the particular application. In 
the subsequent simulations we always use the worst case estimate (9). 

The total parallel overhead r is the sum of its components 

PTcomp(N, P) 
Tcomp == Tcomp( N, 1) ~ 1, 

PTst(N, P) 
r st == ' Tcomp(N, 1) 

PTtr(N, P) 
Ttr == • 

Tcomp(N, 1) 

T == Tcomp + Tst + Ttr· (11) 

The simple linear one-stage communication model is strictly valid only for homoge
neous parallel systems on which logical process neighbors can be mapped to physical 
neighbors (as e.g. on hypercubes) or on which the distance of communication is 
unimportant. On systems with hierarchical architectures (like SUPRENUM) only 
the communication on one level is represented in the model. So the simulations for 
SUPRENUM refer to one cluster and not to the whole two-level architecture. If the 
"communication bottleneck" occurs in the node or on the clusterbus level, the simu
lation might be quite realistic. If, however, the communication times are determined 
by the upper bus network, either a more sophisticated simulation should be used (as 
in [30]) or a (modified) one-level simulation has to be applied to the upper level of 
the architecture. 

7.3 Some Results 

7 .3.1 Analysis of 2D Multigrid Efficiency 

Consider a two-dimensional multigrid algorithm which requires performing relax
ations, projections and interpolations. We will distribute the problem over a set 
of processors by subdividing the grids into rectangular subgrids, with one assigned to 
each processor. To be more specific, we will assume that we are on an N == n x n grid, 
with n == 16m, where m is a power of 2: m == 2l, and that the data are distributed 
in square blocks of size m x m to each of 256 processors. Assume further that each 
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relaxation, interpolation or projection operator involves R, I or P arithmetic opera
tions per grid point and 1 communication operation per boundary point. Depending 
on the exact multigrid strategy used the amount of communication involved in pro
jection is often less than in relaxation, but we ignore this point. Finally we assume 
that the time T( w) (in seconds) required to send w words of data to a "neighboring" 
processor is represented by a linear relationship: T( w) = a+ f3w, where o: represents 
the start-up cost for communicating an arbitrarily short message, while f3 represents 
the incremental cost per word for sending longer messages. We will denote by b the 
time (in seconds) required to execute a typical elementary arithmetic operation, such 
as an add or a multiply. 

In order to minimize the overhead from communication startup, we will buffer 
all of the boundary data from a side of a square, and then communicate it in one 
operation. Thus only 4 communication operations _are required on each grid level 
for a relaxation, projection or interpolation. The complete computational cost of a 
multigrid V-cycle, with v iterations performed per grid level is then: 

Tcomp = (vR + P + !)8(1 + 1/4 + 1/16 ... )m2 

~ 4/3(vR + P +!)8m2
, 

while the corresponding time spent in communication is: 

Tcomm = (v + 2)(4T(m) + 4T(m/2) + 4T(mj4) + ... ) 
4(v + 2)(la + (1 + 1/2 + 1/4 + ... )m/3) 

~ 4(v + 2)(la + 2mj?). 

The factor 2 in the final coefficient of j3 above should actually be 2 - 21
-

1, which is 
very close to 2 as long as the number of multigrid levels lis more than say 3. Similarly 
the coefficient 4/3 in Tcomp should actually be 4/3(1- 4-1), which is again very close 
to 4/3 for moderately large l. 

We have assumed that the computational time per grid level is proportional to the 
number of grid points - which will not be true when there are fewer grid points than 
processors. The above formula for computation is therefore a good approximation 
only for machines with moderate parallelism, or for multi grid cycles where the coars
est grids are not too coarse. Note that vector nodes effectively increase the degree of 
inherent parallelism in the machine, requiring increased processing time per grid point 
even when there are several grid points per processor. We have also assumed above 
that communications in different directions cannot be overlapped and that commu
nication is not limited by the global band-width. If communication in each of the 
four directions can be overlapped, then Tcomm becomes 4 times smaller. It is likely 
that for some machines the communication startup cannot be overlapped, whereas 
the remainder of the communication can be. In that case the coefficient of j3 above 
would be 4 times smaller. However we do not make this assumption in the following 
discussions. 

With the above assumptions, the resulting computational efficiency is then given 
by: 

E = Tcomp/(Tcomp + Tcomm) = 1/(1 + Tcomm), 
where Tcomm = Tcomm/Tcomp, the ratio of communication time to computation time, 
satisfies: 
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3(v + 2)(la + 2mf3) 
Tcomm ~ (vR + p +!)8m2 

For large problems, defined as those where m ~ laj j3, this implies: 

1 
E~ ----~--~--

1 6(v+2) f3 + (vR+P+I) em 

Thus the efficiency for large problems can be arbitrarily close to 1. We note that our 
definition of large problem depends on the number of multigrid levels l, as well as 
on the message startup cost a. The reason is simply that even though coarse grids 
involve only a few points, they still incur the same message startup cost as on a fine 
grid. Thus as the number of levels increases, communication inefficiency also increases 
unless the startup cost is negligible. 

7 .3.2 A Concrete 2D Example 

As an interesting test, we consider the above case for the current SUPRENUM ma
chine which has 8 Mbytes of memory per node, a startup cost a for communication 
of 2000 J.L sec, and a per-word transfer cost {3 of about 1 J..L sec. We will assume a 
computation rate of 8 1-ffiops, so that 5 = 1/8J.L sees, and 8-byte floating point words. 
For relaxation of the simplest variable coefficient 5-point PDE discretization we would 
have approximately 9 floating point operations per point, and we assun1e that inter
polation and projection are similar, so that R = P = I = 9. The largest problem 
that will fit comfortably on 256 nodes would haveN= 64 ·106 grid points (two words 
required per point), so that m = 512. It follows that the number of levels l would be 
9. The ratio laj j3 is then about 18000 so that the problem is not "large" as defined 
above. Inserting the above numbers into the expression for r comm we obtain: 

1 
E ~ ~ s(9·2ooo+2·512·1) = ·84 

1 + 9v+18 5122 

which indicates an efficient solution. Since the term la is much larger than 2m{3 we 
see that even for this large problem, communication is still dominated by the startup 
costs. Thus if overlapping of the data transmission were allowed on different channels 
(without overlapping of the startup cost) there would be only a small improveinent 
in efficiency. Similarly a substantially slower data transfer rate than 1 word per J.L 
sec, or equivalently some saturation of communication bandwidth, could be tolerated 
with little decrease in efficiency. Clearly decreasing the communication startup cost 
a and/ or using fewer multigrid levels 1 will be the best ways to improve efficiency for 
this problen1. The latter approach may result in an increased number of iterations 
however. One possibility is to switch to a different solution strategy at a certain level 
-for exan1ple to transfer data to a single processor and use a direct solver there [28]. 
Note that these estimates have also ignored the difficulty of using all processors, or of 
attaining full efficiency from vector nodes,when processing on coarse grids. 
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7 .3.3 Analysis of 3D M ultigrid Efficiency 

Practical problems of interest are more likely to be three-dimensional than two
dimensional, which qualitatively changes the above estimates. In the three dimen
sional case we obtain for a distribution of a cubic grid of N = n x n x n points into 
cubic blocks each of size m x m x m, with m = 21, 

Tcomp (vR + P + 1)(1 + 1/8 + 1/64 + ... )8m3 

~ 8/7(vR + P + J)8m3
, 

while the corresponding time spent in communication is: 

Tcomm (v + 2)(6T(m2
) + 6T(m2 /4) + 6T(m2 /16) + ... ) 

- 6(v + 2)(la + (1 + 1/4 + 1/16 + ... )m2f3) 
~ 6(v + 2)(la + 4/3m2f3). ' 

We have again assumed that the computational time per grid level is proportional to 
the number of grid points - a reasonable approximation only for moderately parallel 
machines or for grids that do not become too coarse. We have also assumed again that 
communications in different directions cannot be overlapped and that communication 
is not limited by the band-width. If communication in each of the six directions can be 
overlapped, then Tcomm becomes 6 times smaller, while if communication transmission 
alone can be overlapped, then the coefficient of f3 becomes 6 times smaller. While 
the latter is a possibility for SUPRENUM, we do not assume that in the following 
analysis. 

The resulting computational efficiency is then given by: 

E = Tcomp/(Tcomp + Tcomm) = 1/(1 + Tcomm), 

where Tcomm = Tcomm/Tcomp, the ratio of communication to computation, satisfies: 

_ 21(v + 2)(la + 4/3m2 f3) 
TcomTn = 4(vR + p + J)8m3 . 

For large problems, defined now as those where m ~ jZ;;Ji3, this implies: 

1 
E~------

1 + 7(v+2) {3 
vR+P+l em 

7.3.4 A Concrete 3D Example 

As an interesting test, we consider the three-dimensional case for the current SUPRE
NUM machine (parameters as in Section 7.3.2). For relaxation of the simplest variable 
coefficient 7-point PDE discretization we would have approximately 13 floating point 
operations per point, and we assume that interpolation and projection are similar, so 
that R = P = I = 13. The largest problem that will fit on 256 nodes would have 
N = 128 · 106 grid points (two words required per point), so that m = 80 at most. It 
follows that the number of levels would be around 6. The ratio la/ f3 is then about 
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12000 so that the problem is not "large" as defined above. The efficiency is found 
from the expression for T comm to be: 

1 
E = 1 + 21(v+2) 8(6·2000+4/3·802·1) == .89 

4(13v+26) 803 

Note that these estimates have ignored the difficulty of using all processors, or of 
attaining full efficiency from vector nodes, when processing on coarse grids. 

7.3.5 Comparison of 2D and 3D Efficiency 

Note that while the behavior of the efficiency E as a function of m for the "large" three
dimensional case above is similar to that for the "large" two-dimensional case, the 
asymptotic efficiency in three dimensions is actually much worse for the same number 
of grid-points since m is related to the number of grid points N by m == 1/16N112 

in two-dimensions, but by m == l/6.35N113 in three dimensions. Sincethe maximum 
number of points N is hardware limited by the available memory, it appears to be 
much harder to achieve high efficiency for the three-dimensional case. 

However this conclusion is not applicable to the current SUPRENUM machine, 
primarily because the largest problem that can be solved is not "large" as defined 
above for either two or three dimensional problems. This fact alters the efficiency of 
the two-dimensional problems, with less effect on the three-dimensional case, resulting 
in more or less comparable efficiencies for the two cases for the largest problems 
that will fit on SUPRENUM. This is in turn traced to the fact that communication 
startup costs dominate the communication costs in two-dimensions much more than in 
three dimensions. The reason is that in three dimensions so much data is transferred 
en masse per processor that the startup cost is now approximately half the total 
communication cost, whereas it constitutes about 95 % of the total communication 
cost in two-dimensions. 

It follows that for three dimensional problems there is less advantage to reducing 
the number of grid levels or the communication startup cost, while there is a greater 
advantage to overlapping the data transmission part of communication in different 
directions, even if communication startup is not overlapped. In fact, if communication 
transmission is overlapped (reducing the effective size of f3 correspondingly), then the 
three-dimensional efficiency rises to .92 as against .84 for the two-dimensional case. 

Note that we have discussed above the case of the simplest discretizations of vari
able coefficient problems. Efficiencies for the constant coefficient Poisson equation 
discretized on a rectangular grid would be somewhat worse, because there is then 
relatively less computation per communication. However the vast majority of real ap
plications involve local numerical computations that are substantially more complex 
than those involved above. Such computations can be expected to perform at higher 
efficiencies than those we have estimated. As an example, the solutions of hyper
bolic equations encountered in many fluid flow problems require very large amounts 
of numerical computation to be performed before a communication is required. 
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8 Some Measured Results on Parallel Computers 

8.1 Multigrid on Vector Co1nputers 
A standard multigrid code for the solution of the 2D Helmholtz equation with Dirichlet 
boundary conditions on rectangular domains has been optimized for different vector 
computers: Cray X-MP, Fujitsu VP 200, and CDC Cyber 205. (This section is ab
stracted from [32].) The multigrid components: 2D red-black pointwise relaxation, 
bilinear interpolation, half weighting restriction and a higher order full multigrid inter
polation, can be vectorized in a straightforward manner over one coordinate direction. 

We summarize the results in Table 7. The best results were achieved for the 
Cray X-MP. The major reason is the shorter start-up-time compared with the other 
machines, since in multigrid methods large parts of the problem are solved on coarser 
grids where the vector length is automatically short. For very fine discretizations, 
the performance of the Fujitsu VP 200 was better. The reason is a much higher 
discrepancy between short and long vector performance on this machine and the very 
high asymptotic performance compared to the Cray X-MP. 

While memory access with stride 2 did not cause much degradation of the per
formance on the Cray X-MP, a data access stride of 64 bits was essential for good 
performance on the Fujitsu VP 200. This can be achieved by using either stride 2, 
which is natural from the numerical algorithm point of view, and 32 bit arithmetic, or 
by using red-black instead of lexicographic ordering. In the latter case a consequence 
will be shorter vectors in the grid transfers or expensive reordering operations. At 
the time the tests were done, only consecutive data access was possible on the CDC 
Cyber 205. 

In order to achieve longer vectors, field-wise (plain) vectorization was introduced in 
the most time consuming part of the algorithm, i.e. the relaxation step. In field-wise 
vectorization the 2D arrays are treated as lD vectors, thus giving quadratic vector 
length compared to the case where vectorization is performed with lD subarrays of 
the 2D arrays ( vectorization over one coordinate direction). On the coarse grids much 
higher performance was achieved because of quadratic vector length. On fine grids 
one dimensional vectorization was cheaper, because extra or masked operations had 
to be introduced on the Dirichlet boundary in field-wise vectorization. Generally, the 
above strategy is not applicable efficiently to the other multigrid components, because 
constant stride over the whole 2D grid, which is essential for vectorization, can only 
be achieved by executing twice as many operations as necessary. Only on the CDC 
Cyber 205 was this strategy the most efficient one, because of the high vector start-up 
time. 

Results with a more complex multigrid method, for a second order elliptic par
tial differential equation with variable anisotropic coefficients, show that the above 
strategy cannot be applied if alternating zebra line relaxation is used instead of point 
relaxation. The average performance of this code was similar to that of the first model 
problem. 

Summing up, the vectorization speed-up which was achieved with the multigrid 
code was very satisfactory compared to other methods such as the conjugate gradient 
method, which is inherently more efficiently vectorizable. For very large problems, 
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I Multigrid V- cycle I 
Grid points 1332 11292 1 5132 11 

Cray X-MP 1 scalar 7 9 9 

Cray X-MP 1 standard vect. 21 58 83 

Cray X-MP 1 field-wise vect. 34 78 95 

Cray X-MP 2 microtasking vect. 27 92 146 

Fujitsu VP 200 stand. vect. (32 bit) 16 87 193 

Fujitsu VP 200 field-w. vect.(32 bit) 26 124 194 

Fujitsu VP 200 field-w. vect.(64 bit) 22 70 90 

CDC Cyb. 205-2 field-wise vect. 44 102 -

Table 7: Performance of standard multigrid on vector computers in Mflops 

the major applications area of multigrid methods, vectorization speed-up factors of 
almost the same size were achieved. The multigrid method is then to preferable due 
to its superior numerical efficiency.-

The multigrid code was also tested on the Cray X-MP 2, a shared memory vector 
computer with two processors. Because of the low granularity of the tasks between 
synchronization the results with macro- and microtasking have been more or less 
disappointing. When combining parallelization over the outer loop and vectorization 
over the innermost loop the synchronization overhead was so large that reasonable 
efficiencies have only been achievable for very large problems. It should be mentioned 
here that the above model problem is a worst case study for this class of computers, 
because of the small number of operations that has to be performed at each grid point. 
For more complex problems better efficiencies should be expected. 

In contrast to the Cray X-lVIP 2 the results on the Alliant FX 8 with four processors 
are very satisfactory. The major reason is the much lower synchronization overhead 
compared to the arithmetic computation speed. , 

A very detailed description of all tests, discussions of the results and conclusions 
can be found in [32]. 

8.2 Multigrid on the Caltech Hypercube 

A 3D-Poisson MG-solver was implemented on the CalTech Mark II hypercube [48]. 
Multiprocessor efficiency rates are given in Table 8. Obviously, the problem with 
N = 83 grid points is too small for a system with P = 32 nodes. However, even 
medium-size problems with N = 323 grid points achieve an MP-efficiency of more 
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than 0.5. 

N time S(N, 32) E(N,32) 

83 0.306 6.8 0.21 

163 0.847 12.4 0.39 

323 3.370 18.6 0.58 

Table 8: Computing time, MP-speed-up and MP-efficiency for a multigrid method 
for the 3D-Poisson equation, with periodic boundary conditions using'V-cycles, with 
V1 2, v2 = 1 relaxations, on the Cal Tech Mark II hypercube. 

Table 9 gives a comparison of the MG-solver with a standard relaxation solver 
and with a FFT solver. Although the MP-efficiency of the relaxation and the FFT 
solver is considerably better than for the MG-solver, the absolute computing time is 
significantly worse. So both, MP- and numerical efficiency are important in designing 
good algorithms for multiprocessor systems. 

method time S(323, 32) E(323
, 32) 

relaxation 381.3 25.9 0.81 

MG 3.4 18.6 0.58 

FFT 22.0 29.8 0.93 

Table 9: Computing time, MP-speed-up and MP-efficiency for different solvers applied 
to the 3D-Poisson equation with periodic boundary conditions and N = 323 grid 
points, on the CalTech Mark II hypercube. 

8.3 Multigrid on the Intel iPSC 

Example 1: Poisson's equation represents one of the hardest problems among partial 
differential equations for parallel computers. The reason for this is that the ratio of 
arithmetic and communication work is very bad in this case. 

The parallel multigrid code MGDEMO (for details see [28]), which solves the 2D
Poisson equation, was implemented on the Intel iPSC /2. Table 10 shows some results. 
The following parameters were used in the algorithm: V-cycles, half injection as re
striction, red-black relaxation, linear interpolation of corrections, two relaxation steps 
before, one after the coarse grid correction. On very coarse grids (grids with only 
two points in each direction per process) the number of active processes was reduced 
to one by agglomeration of the whole distributed application. MGDEMO is portable 
between different types of parallel machines because all communication between pro
cesses is performed by routines of the SUPRENUM communications library. 
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processors points mode time/ cycle (sec) Mfiops efficiency 
16 == 4 X 4 17 X 17 scalar 0.05 0.15 0.11 
16 = 4 X 4 33 X 33 scalar 0.08 0.35 0.14 
16 = 4 X 4 65 X 65 scalar 0.13 0.86 0.26 
16 = 4 X 4 129 X 129 scalar 0.26 1. 72 0.45 
16 = 4 X 4 257 X 257 scalar 0.63 2.77 0.68 
16 = 4 X 4 513 X 513 scalar 1.97 3.54 0.86 
16 = 4 X 4 1025 X 1025 scalar 7.07 3.92 0.95 

16 = 4 X 4 17 X 17 vector 0.07 0.11 -
16 = 4 X 4 33 X 33 vector 0.11 0.27 -
16 = 4 X 4 65 X 65 vector 0.17 0.68 -
16 = 4 X 4 129 X 129 vector 0.28 1.61 -

16 = 4 X 4 257 X 257 vector 0.48 3.64 -
16 = 4 X 4 513 X 513 vector 0.94 7.38 -

16 = 4 X 4 769 X 769 vector 1.52 10.25 -

1 = 1 X 1 257 X 257 scalar 6.64 0.26 1.00 
4=2x2 257 X 257 scalar 1.84 0.94 0.93 
16 = 4 X 4 257 X 257 scalar 0.63 2.77 0.68 

1 = 1 X 1 129 X 129 vector 0.68 0.65 -
4==2x2 129 X 129 vector 0.38 1.17 -
16 = 4 X 4 129 X 129 vector 0.28 1.61 -

1 = 1 X 1 193 X 193 vector 1.17 0.82 -
4=2x2 193 X 193 vector 0.57 1.71 -
16 = 4 X 4 193 X 193 vector 0.35 2.64 -

Table 10: MGDEMO benchmarks on the Intel iPSC/2 

The tests show efficiencies near 0.5 in scalar mode (compiler vectorization feature 
switched off) even for medium problem sizes such as 1000 points per process. 

In the case of vector mode there are no efficiency rates listed in the table. For fair 
results, the whole problem would have had to be run on one single processor (differing 
vector lengths) and this was not possible because the iPSC /2 vector boards available 
at the GMD, where these tests were carried out, only have 1 Mbyte of vector memory. 
Though all arithmetic parts of the code were vectorized, the scalar code shows a 
slightly better performance for problems up to a size of about 32 x 32 points per 
processor. This is due to a quite high vector start-up time. For larger problems the 
vector mode proves to be faster than the scalar one. For the largest problem fitting 
on the vector boards the machine performed at more than 10 Mfiops. 

Example 2: Another example is the generalized biharmonic boundary value prob
lem 

~2u+ a(x,y)~u+ b(x,y)u = f(x,y) 
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with boundary conditions given for u and the normal derivatives Un. For multigrid 
algorithms it is useful to rewrite the differential equation as a system 

6v + a(x, y)v + b(x, y)u 

Lu- v 

f(x,y) 
0. 

Information on the numerical treatment of such biharmonic type systems can be found 
in [34, 35, 45]. 

processors points mode time/ cycle (sec) Mfiops 
1 = 1 X 1 17 X 17 scalar 0.58 0.13 
1 = 1 X 1 33 X 33 scalar 1.43 0.16 
1 = 1 X 1 65 X 65 scalar 3.76 0.18 
1 = 1 X 1 129 X 129 scalar 11:24 0.20 

4=2x2 
I 

17 X 17 scalar 0.45 0.19 
4=2x2 33 X 33 scalar 0.87 0.28 
4=2x2 65 X 65 scalar 1.72 0.43 
4=2x2 129 X 129 scalar 3.96 0.59 
4=2x2 257 X 257 scalar 11.11 0.73 

16 = 4 X 4 17 X 17 scalar 0.43 0.21 
16 = 4 X 4 33 X 33 scalar 0.75 .. 0.34 
16 = 4 X 4 65 X 65 scalar 1.24 0.65 
16 = 4 X 4 129 X 129 scalar· 2.16 1.19 
16 = 4 X 4 257 X 257 scalar 4.46 1.96 
16 = 4 X 4 513 X 513 scalar 11.71 2.65 

Table 11: Timing of a parallel multigrid algorithm for the generalized biharmonic 
equation 

The results in Table 11 were obtained by a multigrid algorithm which consists of 
F-cycles, Full Weighting, linear interpolation of corrections and red-black relaxation. 
Additional relaxations were performed along the boundaries with the Un boundary 
conditions. One relaxation step was executed before and one after the coarse grid 
correction. Seven relaxation steps were applied to solve the problem on the coarsest 
grid, which consisted of 5 x 5 points in all test cases of Table 11. 

For example, the results of the 129 x 129 problem on 1 and 16 processors show 
that the efficiency is 

11.24 
E = ~ 0.33 

2.16 . 16 
It is not surprising that this efficiency is worse than that of l\1GDEMO for the cor
responding problem size in Table 10 because F-cycles, with more communication on 
coarse grids, were applied for the biharmonic problem. On the other hand, the times 
for the 129 x 129 problem on 1 processor and for the, approximately 16 times larger, 
513 x 513 problem on 16 processors are approximately the same, indicating very good 
efficiency of the parallel application. 

59 



Example 3: A parallel multigrid solver for 3D anisotropic elliptic problems (see 
Section 4.1) was developed using the communications library. 

relaxation processors points efficiency 

8=2x2x2 17x17x17 0.80 
8=2x2x2 33 X 33 X 33 0.92 

16 = 4 X 2 X 2 17x17x17 0.54 
3D-point 16 = 4 X 2 X 2 33 X 33 X 33 0.76 

16 = 4 X 2 X 2 48 X 48 X 48 0.85 
; 

32 = 4 X 4 X 2 17x17x17 0.37 
32 = 4 X 4 X 2 33 X 33 X 33 0.60 
32 = 4 X 4 X 2 48 X 48 X 48 0.73 

8=2x2x2 17x17x17 0.64 
8=2x2x2 33 X 33 X 33 0.82 

16 = 2 X 2 X 4 17x17x17 0.37 
3D-(x,y)-plane/2D-point 16 = 2 X 2 X 4 33 X 33 X 33 0.60 

16 = 2 X 2 X 4 48 X 48 X 48 0.77 

I 
32 = 2 X 4 X 4 33 X 33 X 33 0.37 
32 = 2 X 4 X 4 48 X 48 X 48 0.56 

3D-alternating-plane/ 8=2x2x2 17x17x17 0.59 
2D-alternating-line 8=2x2x2 33 X 33 X 33 0.75 

Table 12: Efficiency of parallel 3D multigrid algorithms on the Intel iPSC /2 

Depending on the type of the anisotropy different smoothing schemes have to be 
applied for different problem classes. In the parallel multigrid solver a plane relax
ation step is performed by one V -cycle of a 2D multigrid algorithm. This 2D solver 
uses point or line relaxation for smoothing, depending again on the anisotropy. The 
optimization of the communication within this 2D solver is of considerable importance 
for the efficiency of the parallel code. The results of Table 12 are from [18] (which 
also includes further details and more results). 

In all tests on the Intel iPSC /2 (Table 12) the efficiencies are quite high, even 
for relatively small problems. If more complex smoothing schemes like line or plane 
relaxation are used, the efficiencies become somewhat smaller because of the growing 
communication overhead. Line and plane relaxations themselves require communica
tion between the processes. Thus, for a 17 x 17 x 17 problem on 2 x 2 x 2 processors, 
the efficiency is 0.8 if point relaxation is used. It decreases to 0.64 for plane relax
ation if the 2D multigrid solver uses point relaxation, and to 0.59, for alternating 
plane relaxation with alternating line relaxation. 

Example 4: The 2D-Stokes MG solver (see Section 5.2) was implemented on 
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the Intel iPSC. Figure 8 shows the MP-efficiency rates in relation to the number of 
processors and the problem size. For a 64-hypercube, a problem size of .LV = 2562 grid 
points is necessary in order to achieve an efficiency of more than 0.5. 

512 x 512 cells 

256 x 256 cells 

128 x 128 cells 

64 x 64 cells 

32 x 32 cells 

processors 

Figure 8: Parallel MG-code for the 2D-Stokes problem. Each curve shows the MP
efficiency for constant problem size N and increasing P on the Intel iPS C. 

8.4 Multigrid on SUPRENUM 

As a first test, the performance of the parallel multigrid code MGDEMO, which solves 
the 2D-Poisson equation, was measured on SUPRENUM. Table 10 shows a selection 
from the results. For more information see [26, 33]. 

Parameters used in the algorithm were: V-cycles, half injection, red-black relax
ation, linear interpolation of corrections, two relaxation steps before, one after the 
coarse grid correction. On very coarse grids no agglomeration was performed. In
stead, an appropriate number of relaxations was carried out on the coarsest grid. The 
program was fully vectorized. 

Though multigrid for the Poisson equation is a very hard test for obtaining good 
parallel efficiency, the Mfiops rates indicate that the performance increases nearly 
linearly with the number of processors. 
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processors points Mflops 
1 513 X 257 4.0 
2 513 X 513 6.4 
4 1025 X 513 11.7 
8 1025 X 1025 23.7 

16 2049 X 1025 47.5 
64 4097 X 2049 169.0 

Table 13: MGDEMO benchmarks on SUPRENUM 

~.5 Multigrid on the Connection Machine (CM) 
We will now see that for certain hierarchical algorithms there are fundamental ob
stacles to using massive parallelism. The case in point is the implementation of a 
standard multigrid algorithm on the CM-2. The implementation for the CM-1 is 
described in detail in [40] and we summarize the main ideas here. The CM-2 imple
mentation follows exactly the same strategy. 

As a test problem we solved the five-point discretized Poisson equation for a rect
angular grid, using modified Jacobi relaxation (Jacobi relaxation with relaxation pa
rameter w) on each grid level. Points of the finest grid are assigned to distinct virtual 
processors. Coarse grid points are allocated to the same processor as their corre
sponding fine grid point. This simplifies the interactions between grid levels, while 
somewhat increasing the cost of coarse grid iterations, since coarse grid- points are 
physically far apart. However, much more serious is the fact that on coarse grids it 
is impossible to keep all processors active. In the extreme case of a 1 x 1 grid, the. 
efficiency can be at most 1/65536. 

We present performance curves measured for multigrid on the CM-2 in Figure 9. 
The bar chart shows the lVIflops generated in solution as a function of the number of 
grid levels utilized. The case of one grid level is simply solution by relaxation, and 
gives a very high Mflops rate since all processors are used at all times. As the number 
of levels increases, Mflops drop dramatically as expected - most processors are sitting 
idle most of the time. But the solution time drops steadily with increasing numbers 
of grid levels (indicated by the curve in the same figure). Thus, multigrid is still a 
substantial benefit on the CM, despite the poor overall efficiency. 

In the following section we present a more highly parallelizable class of multiscale 
methods which avoid the difficulties encountered with standard multigrid. For these 
methods the bar chart in the figure stays essentially horizontal and at the height 
corresponding to relaxation, and the solution time curve drops far more steeply as we 
will see. 
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9 A Different Parallel Multigrid Approach 

9.1 Parallel Superconvergent Multigrid 

In the previous section, we have seen the difficulty with multigrid on massively parallel 
machines. In the extreme case of the. coarsest grid, only a single processor is actually 
doing anything useful. As a result the observed computational time is substantially 
longer than one might have expected from the equivalent serial algorithm. Algorith
mically, parallel multi grid is an O(log N), rather than an 0( 1) solution method. 

We describe now an algorithm which we will call PSMG (Parallel Superconvergent 
Multigrid) that takes a step towards solving this problem. The new algorithm still 
requires O(log( N)) parallel operations for solution, but the constant multiplying the 
log( N) is much smaller than before because of more rapid convergence of the solution 
which therefore requires less iterations to reach a desired level of accuracy. This is 
accomplished by solving many coarse grid problems simultaneously, combining their 
results to provide an optimal finer grid approximation. No extra computation time is 
involved (if N processors are available) since the extra coarse grid problems are solved 
on processors which would otherwise have been idle. 

We state a rigorous convergence criterion for PSMG, which gives a remarkably 
sharp estimate of the rate of convergence for the case of constant coefficient operators. 
For example, in some cases an upper bound for the multigrid convergence rate is within 
a few percent of the supremum of the two-grid convergence rate taken over all grid 
sizes, even for V-cycles with only one smoothing operation performed per grid level. 
In some situations PSM G reduces to an exact (direct) solver. Numerical examples 
involving elliptic operators on rectangular grids are also presented. For simplicity, we 
will deal with periodic boundary data. For a complete exposition, including proofs 
and numerical results, we refer to our papers [13, 14, 15, 16, 41]. 

9.2 The Basic Idea 

Consider a simple discretization problem on a 1- dimensional grid. Standard multigrid 
techniques work with a series of coarser grids, each typically obtained by eliminating 
every other point of the previous grid. The error equation for the fine grid is then 
projected to the coarse grid at every second point, the coarse grid equation is solved 
approximately, and the error is interpolated back to the fine grid and added to the 
solution there. Finally a smoothing operation is performed on the fine grid. Recursive 
application of this procedure defines the complete multigrid procedure. 

The basic idea behind PSMG is the observation that for each fine grid there are 
two natural coarse grids - the even and odd points of the fine grid. (For simplicity we 
assume that periodic boundary conditions are enforced). Either of these coarse grids 
could be used at any point to construct the coarse grid solution, and both would pre
sumably provide approximately equivalent quality solutions. Multigrid traditionally 
uses the even points at each grid level. 
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• • • • • • • • • • • 
A typical fine grid . 

• • • • • • 
The standard n1ultigrid coarse grid - the even points . 

• • • • • 
The alternative multigrid coarse grid - the odd points. 

Why not try to combine both of these coarse grid solutions to provide a fine 
grid correction that is better than either separately? This should be possible since 
in projecting from the fine grid, the odd and even points receive slightly different 
data in general, and thus each represents slightly complementary views of the fine 
grid problem to be solved. Thus it ought to be possible to find a combination of 
the two solutions that is significantly better than either separately. It would follow 
immediately that such a scheme would converge faster (fewer iterations) than the 
corresponding standard multigrid scherne. As a concrete example, if the combination 
of coarse grid solutions is simply the arithmetic average of the two standard coarse 
grid interpolation operators, then the algorithm would converge at least as well as the 
usual multigrid algorithm since the convex combination of two (iteration) operators 
has norm bounded by the larger of the norms of the two operators. 

Note that on a massively parallel machine the two coarse grid solutions may be 
solved simultaneously, in the same time as one of them would take - we assume here 
that the number of processors is comparable to the number of fine grid points. As will 
be seen below, both coarse grid problems are solved using the same set of machine 
instructions. Consequently the algorithm is well suited to SIMD parallel computers, 
as well as to MIMD machines. On machines with more modest numbers of processors 
it may still make sense to switch from standard MG to PSMG at grid levels such that 
the number of grid points is comparable or less than the number of processors. 

The idea outlined above extends naturally to multi-dimensional problems. In d 
dimensions, 2d coarse grids are obtained from a fine grid by selecting either the even 
or the odd points in each of the d coordinate directions. The fine grid solution is then 
defined by performing a suitable linear interpolation of all 2d coarse grid points. This 
procedure is repeated at every grid level. 

Suppose we are required to solve a discrete algebraic equation A(L)u == f on a 
rectangular grid G(L) with grid spacing or scale hL == 2-L h. We assume that the 
operator A (L) has natural scale hL as would be true for a difference operator on G(L). 
We introduce a spectrum of operators A(1),Z == 0, 1, ... ,L, each defined on all of G(L) 
and of scale hz 2-t h. Starting from an initial guess u on G(L), we construct the 
residual 
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where il is the exact solution and e is the error. We will use the residual to construct 
an improved solution u' of the form: 

u' = u + p(L)r, 

where p(L) is a linear operator on G(L). This results in a new error 

e' = il- u' = (I- p(L) A(L))e, 

and a new residual 
r' = A(L)e' =(I- A(L)p(L))r. 

Convergence of the above procedure will be guaranteed provided that 

The PSMG algorithm will be defined by the iteration operator p(L) (denoted M(L) 
below) in terms of the multiscale operators A (l). 

As is usual in multigrid approaches we arrive at the recursive PSMG algorithm by 
first introducing a two-grid algorithm. The solution of the error equation A(L)e = r is 
equivalent to the solution of the original equation A(L)u f. In the two-grid PSMG 
algorithm, we approximate the error e by the exact solution e' of the coarse scale 
equation: 

A (L-l) e' = r. 

Note that since A(L-l) is defined on all of Q(L), it follows that the error equation is 
being solved on the fine grid, which may be regarded as the union of a set of coarse 
grids. For example, in the 1-dimensional case the above equation is solved on both 
the even and odd subgrids. It is for this reason that we prefer the name multiscale 
rather than multigrid as a description of the algorithm. Having said this, we will lapse 
frequently in the sequel into the more familiar use of the word coarse grid rather than 
coarse scale! In such cases the term coarse grid will be understood to mean the grid 
Q(L) viewed as a union of coarse grids. 

Next we will combine the multiple coarse grid solutions defined by e' into a fine 
grid correction e" by applying a linear combining transformation (interpolation) of 
the form: 

II _ Q(L) I e - e, 

where the operator Q(L) remains to be specified. This leads to an improved fine grid 
solution: 

u" = u + e". 

The final step involves a smoothing operation on the fine grid: 

u"' SM(L)(u",f), 

(I- z(L)A(L))u" + zL f. 

with a corresponding iteration operator S(L) = I - z(L) A (L). By suitably choos
ing A (L), Q(L) and zCL), the above procedure should lead to convergent solutions. 
In particular our strategy will involve choosing pairs Q(L)' z(L) which optimize the 
convergence rate of the algorithm for given A (L). 
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We note that the two-grid PSMG algorithm may be described in the form: 

with the decrease in residual given by: 

where the two-grid iteration operator T(L) =I- T(L)A(L) is determined by: 

~ 

We define the two-grid convergence rate r of this iteration procedure as the quantity: 

r = sup p(T(L)), 
L 

where p( A) denotes the spectral radius of an operator A. Clearly r provides an upper 
bound on the asymptotic convergence rate per iteration of the two-grid method on 
any grid. 

We obtain the full PSMG algorithm by recursive application of the two-grid algo
rithm described above. The corresponding error correction then takes the form: 

where the multi-grid iteration operator M(l) =I- M(l) A(l) is determined by: 

with M(o) = (A(o))-1 • The corresponding residual reduction operator is given by: 

We define the multigrid convergence rate of this procedure as the quantity: 

JL = sup p( M(l) ). 
l,L 

Clearly JL provides a bound on the asymptotic convergence rate of PSMG on any grid. 
Further bounds on the convergence rate JL will be derived that are extremely sharp. 

9.3 Multiscale Convergence Rates 

In this section we present an upper bound on the convergence rate of the PSMG algo
rithm, valid for the special but important case of translation invariant grid operators 
A (l) • To motivate the bound, we rewrite the above recurrence relation for M(l) in the 
form: 

M(l) = T(l) + (S(l)- T(l))M(l- 1); M(o) = 0. 

In the case that all operators are translation invariant, each operator may be repre
sented as multiplication by a function M(1)(k), T(t)(k) or S(l)(k), in frequency space, 
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and the above recurrence then applies to these functions for each wave-number k. We 
conclude from the recurrence formula that liM II ::; JL*, where 

JL* =sup max max {I T(l)(k) I /(1- I sU)(k)- T(Z)(k) I)} 
L kEG(L) l~L 

While this bound is the basis for rigorous proofs of convergence [16], we also have 
used it to create a numerical method to optimize the convergence rate. The bound 
JL* is a function of the operators zU) and Q(l). By performing a numerical non-linear 
optimization procedure we attempt to choose the best possible Z and Q. We give 
some examples in the following sections, referring to [13, 17] for complete details. 

9.4 PSMG: Algorithmic Form 

The PSMG algorithm works with a single grid of points Q(L) of size 2L in each di
mension (called the level L grid, or the fine grid), but utilizes operators with different 
scales l ::; L on that grid. Thus the algorithm is strictly speaking multiscale rather 
than multigrid. There are three basic operators: a finite difference operator A, an 
interpolation operator Q and a smoothing operator Z. All operators are periodic on 
the grid in each coordinate direction. The PSMG algorithm extends naturally to both 
Neumann and Dirichlet boundary conditions, with no increase in convergence rate. 
The simplest approach to implementing Neumann or Dirichlet boundary conditions is 
to use reflection or anti-reflection boundary conditions and an extended grid. However 
we will discuss only the periodic case here for simplicity. 

The operators at scale level l, denoted A (l), Q(l), and z(l), couple points at a 
distance dz = 2L-l. Each levell operator is defined at all points of the grid Q(L). The 
basic steps involved at levell, 0 < l::; L, for the solution of A(L)U = j, starting with 
an initial guess u, are described by: 

Algorithm PSMG(l,u,f): 

1. Compute residual: r = f- AU)u. 
2. Project residual to coarse grid: r = r (trivial injection). 
3. Solve coarse grid residual equation using PSMG: e = PSMG(l-1,0,r). 
4. Interpolate to fine grid: e' = Q(1)e. 
5. Apply a relaxation: e" =(I- Z(l)A(1))e' + z(l)r. 

6. Compute and return the new solution: u" = u + e". 

An exact solver is utilized on the coarsest grid. The PSMG strategy is to choose Q(l) 

and z(l) as functions of A (l) in such a way as to optimize the convergence rate of the 
above algorithm. Explicit choices for Q(l) and z(l) were given in [13] for the cases 
where A(I) represents either the standard 5-point or Mehrstellen discretizations of the 
Laplacian. In each case we provided upper bounds on the convergence rate for the 
procedure which are uniform in l. 

9.4.1 Application to Poisson's Equation 

In order to complete the description of the algorithm it is essential to define the 
operators Q(l) and z(l) used for interpolation and smoothing. In this section, we 
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describe how to choose Q(l) and z(l) in an optimal way for the special case of an 
operator which has translation invariant coefficients. We will illustrate the ideas for 
the Poisson equation discretized on a periodic rectangular grid G(L) of N = n * n 
points, n = 2L, which we label with the index i = ( i 1 , i 2), 0 :; i 1 , i 2 < n. We will use 
two discretizations of the negative Laplacian -~ in our analysis. The first of these is 
the standard five-point discretization defined by 

where e~l) are integer vectors of length d(l) = 2L-l in the coordinate directions in index 
space, or alternatively by the familiar five- point star notation: 

The second discretization we will study is the more accurate Mehrstellen discre+,ization 
represented by the nine-point star 

[ 

-1 -4 -1 ] 
A~z) = (6hf)- 1 -4 20 -4 . 

-1 -4 -1 

Similarly, we will choose the operators Q(z) and z(l) to be defined by simple symmetric 
three parameter nine-point star operators (with appro:priate scale length): 

For simplicity, we take the parameters qi and Zi to be independent of the scale pa
rameter l. 

Since all of these operators are translation invariant, they are diagonalized by 
the discrete Fourier transform. The analysis of the PSMG algorithm then becomes 
particularly convenient. To get an improved convergence rate we have also used a 
25-point star operator to define Q: 

q22 q12 q2 q12 q22 

q12 qu ql q11 q12 
Q(l)- q2 ql qo ql q2 25 -

q12 qll ql qll q12 
q22 ql2 q2 ql2 q22 

9.5 PSMG Performance 

We have analyzed both 5-point and 9-point discretizations using a simple model of 
massively parallel computation. The model includes the assumption of 1 processor 
per fine grid point, nearest neighbor communication to 4 neighbors, sufficient parallel 
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bandwidth for PSMG communications to precede without collisions, but does not 
allow for overlap of communication with computation. The model assumes an SIMD 
architecture, although of course an MIMD architecture would provide results that are 
at least as good. 

In the paper [13] we used the bound J.L* introduced above as a basis for optimizing 
the convergence rate: to be specific, we optimized the bound as a function of the 
coefficients of Q and Z, resulting in choices for Q and Z that yielded convergence rates 
at least as good as J.L*. Our earlier results from [13] have been improved substantially 
recently in the paper [15]. In [15] we optimize the actual convergence rates J.L(L), for a 
suitably fine grid L (e.g. L = 11 ). Because all operators are self-adjoint, the spectral 
radius of the multigrid iteration is just the maximum of the frequency space kernel 
of the operator. Our new procedure involves explicit evaluation of the kernel M(l)(k) 
for all frequence pairs k in G(L), which we show can be accomplished in only. O(N) 
operations (on a serial machine). We then optimize the maximum of this kernel as a 
fu.nction of Q and Z, resulting in better parameters and convergence rates than were 
obtained from JL*. 

For a true measure of efficiency of an iterative method it is necessary to consider 
the work involved in an iteration as well as the convergence rate obtained. If the 
asymptotic convergence rate of a method is p and the method requires w operations 
per iteration, the normalized operation count is defined as w / log10 p, and measures 
the parallel work required per grid level to reduce the error by a factor of 10. In a 
parallel method, it is necessary to track both arithmetic and communication work. 

For several PSMG methods we obtained asymptotic convergence rates, the num
ber of parallel arithmetic and communication operations required on each grid per 
iteration, and also the normalized operation count for arithmetiC and communication 
[15]. We summarize the results for some cases in Table 14. In the table we use the 
notation PSMG9-25, for example, to denote the PSMG algorithm with a 9-point A 
and a 25-point Q. The Z operator is always taken to be a 9-point stencil. 

convergence steps per level normalized steps 
method rate comp. comm. comp. comm. 
PSMG5-9 .08867 14 12 13.31 11.40 
PSMG5-25 .02504 22 16 13.74 9.99 
PSMG9-9 .02165 16 12 9.61 7.21 
PSMG9-25 .00165 24 16 8.62 5.75 

Table 14: PSM G convergence rates 

The corresponding coefficients for the interpolation operator Q and the smoothing 
operator Z are (in the notation of [13, 15]): 
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PSMG5-9: qo = .25 ql = .125 qn = .0625 
z0 = .278079 Z1 = .0534577 z11 = .0125615 

PSMG5-25: qo = .361017 ql = .11458 qn = .0625 
q2 = -.0309162 q12 = .00521024 q22 = .00316188 
z0 = .361452 Z1 = .0891718 z11 = .0293793 

PSMG9-9: qo = .25 ql = .125 qll = .0625 
z0 = .300589 Z1 = .0432465 Z11 = .0139994 

PSMG9-25: q0 = .34152 ql = .0995677 qll = .Q625 
q2 = -.0199225 q12 = .0127161 q22 = ....c.00295755 
z0 = .283286 Z1 = .0323815 z11 = .00835 795 

9.6 How Does PSMG Compare with Standard MG? 

Normalized convergence rates provide a basis for comparison of PSMG with the fast 
red-black Poisson solvers of standard multigrid. The comparison is of course mean
ingful only for the massively parallel design range of PSMG - the case where there 
are about as many (or more) processors as fine grid points. Recent papers by N. 
Decker [11, 12] describe a very efficient implementation of a parallel version of a vari
ant (RNTRB) of the standard red-black multigrid algorithm. In [15] we show that 
the PSMG9-25 method requires less than one half of the arithmetic and one fifth of 
the communication required by RBTRB. RBTRB, as implemented in [12], requires 

, 13 arithmetic and 21 communication operations for a convergence rate of .19, yield
ing normalized values of 18.02 parallel arithmetic and 29.12 parallel communication 
operations per digit of error reduction, as compared to 8.62 arithmetic and 5. 75 com
munication operations required by PSMG. We have studied a wide range of standard 
RB methods in [ 41], and there conclude that PSM G is close to four times more efficient 
than the best of them. 

We do not address in this paper the question of whether other standard multigrid 
cycles may give better parallel performance than RB methods. 
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